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ABSTRACT: A strategy for chiral ligand design has been developed that allows for incorporation of an achiral bicyclic bridgehead
phosphoramidite to generate a class of hybrid diphosphorus ligands for high activity and asymmetric control. Using this concept, a
series of chiral phosphine—phosphoramidite ligands bearing the sole chirality at the ligand backbone have been prepared and
successfully employed in the Rh-catalyzed asymmetric hydrogenation of 2-vinylanilides for the synthesis of optically active anilines
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bearing an ortho-tertiary benzylic stereocenter.

Metal—based asymmetric catalysis has been widely
exploited for the synthesis of biologically and
economically important chiral compounds." This process
typically requires a chiral ligand to achieve the goal of high
reactivity and enantioselectivity. As the synthesis of the desired
products in a satisfactory enantiopurity cannot always be
reached using the existing catalysts, the disclosure of more
powerful ligands has continued to be a central and long-
standing task for asymmetric catalysis.” As an important
component found in a diverse array of catalysts, a m-acceptor
phosphoramidite structural motif has been recently used to
construct chiral hybrid diphosphorus ligands, which displayed
high potential in asymmetric catalysis, in particular hydro-
genation and hydroformylation.”™> In all of these ligands, the
phosphoramidite motif has a linear monocyclic structure
(Scheme 1). One potential problem of this flexible arrange-
ment is that the P-chelate atom is not held as closely in space
to the chiral center at the ligand backbone, which may lead to a
detrimental effect in the asymmetric inducement of a chiral
catalyst. As a result, the enantioselectivity of existing ligands
largely depends on the chiral element installed in the
phosphoramidite framework by incorporation of structurally
rigid axial—chiral biaryls or sterically hindered central—chiral
TADDOL motifs (Scheme 1).

An alternative strategy for resolving this problem is
increasing the rigidity of phosphoramidite skeleton, thus
efficiently transferring the chiral information at the ligand
backbone to the central metal. While this may potentially be

© 2021 American Chemical Society
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Scheme 1. Bicyclic Bridgehead Phosphoramidite Strategy
for the Design of a Hybrid Diphosphorus Ligand

Linear monocyclic phosphoramidite  Bicyclic phosphoramidite scaffold

scaffold in previous works: in this work: @
PR12 ; B _‘\\\,
o )
—p ;

~
b/ PPhO
(S)-L1

o structurally rigid

o structurally flexible ° bridgehead P-chelate atom

° normally requiring a chiral element © no necessity for a chiral element
in phosphoramidite in phosphoramidite

overcome by incorportation of increasingly large ortho
substitutents in biaryl motifs, we hypothesized that a
fundamental approach to achieving such a goal could be
realized through the construction of an achiral bicyclic
bridgehead phosphoramidite scaffold by inclusion of the N—
P bond as part of the bicyclic bridge (Scheme 1).°
Furthermore, the bicyclic bridgehead structure could sub-
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stantially enhance the s-acceptor ability of phosphoramidite
due to its inherent geometrical constraint, and the steric
environment around the bridgehead P atom can be finely
tuned by simply changing the substituents on the bicyclic
backbone. We believed that this strategy would provide an
opportunity to generate new chiral ligand classes for unique
activity and asymmetric control. Surprisingly, to the best of our
knowledge, this bicyclic bridgehead phosphoramidite strategy
has never been explored for chiral hybrid ligand design. Herein,
we report our findings in the design, synthesis, and successful
implementation of new chiral hybrid phosphine—phosphor-
amidite ligands featuring a unique bicyclic bridgehead P-
chelate atom for the first Rh-catalyzed enantioselective
hydrogenation of 2-vinylanilides, demonstrating the potential
of this strategy in hybrid ligand design.

The synthesis of chiral phosphine—phosphoramidite ligand
L1 was achieved in several straightforward steps starting with
(S)-1-[2-(diphenylphosphino)phenyl]ethylamine [(S)-
DPPNH, 1]° and bis(2-hydroxyphenyl)methanones 2, where-
by the requisite bicyclic bridgehead phosphoramidite skeleton
can be readily constructed as outlined in Scheme 2. Initially,

Scheme 2. Modular Synthesis of Chiral Phosphine—Bicyclic
Bridgehead Phosphoramidite Ligands (S)-L1 and Crystal
Structure of (S)-Lle

o

OH

: CF3COOH
+ toluene, reflux
= N ’
PPh; R/ 29 12h
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LIAIH,/THF - _PBray/EtsN
_
t 24 h Rchal rt, 6 h .
rt, HG 3 ‘\C()) |
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(S)-L1
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¢ R=2Me e: R =2,4-di'Bu

the condensation of (S)-DPPNH, 1 with ketones 2 was
performed in refluxing toluene under the catalysis of
CF;COOH, which led to the formation of imines 3. Imines
3 were then reduced by LiAlH, to produce secondary amines
4. The key step for the formation of structurally rigid bicyclic
bridgehead phosphoramidite could be smoothly performed by
the reaction of 4 with PBr; in CHCl; with Et;N as the acid
scavenger, thus leading to the target phosphine—phosphor-
amidite ligands L1. It is important to note that these ligands
are structurally stable, and samples of the ligand have been
stored for several months without any changes as determined
by NMR detection. The structure of these ligands was
conﬁrmed after obtaining an X-ray crystal structure of (S)-

Lle.”
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With these new chiral hybrid ligands in hand, we turned our
attention to test their performance in an enantioselective
transformation. Anilines are previleged building blocks for
medicinal chemistry and materials science;® however, one
deficiency for their synthesis resided in the lack of efficient
procedures for the construction of ortho chirality of branched
alkyl substituents, mostly depending on the asymmetric
alkylation of arenes.” We envisioned that the catalytic
asymmetric hydrogenation of readily available 2-vinylanilides
may provide a concise and powerful approach to constructing
ortho-tertiary benzylic stereocenters of anilines for its inherent
efficiency and atom economy. However, few successful
examples suggest the challenging nature of this task.'” To
this end, we undertook a screen of chiral ligands for Rh-
catalyzed hydrogenation of 2-(1-phenylvinyl)anilide Sa.
However, no ligand displayed a somewhat satisfactory
enantioselectivity, although high reactivity was observed in
some cases, except the linear monocyclic phosphine—
phosphoramidite ligand resulting in a promising ee of 37%
(for details, see the Supporting Information). This result
suggested that a hybrid phosphine—phosphoramidite ligand
may be a suitable ligand class, thus encouraging us to evaluate
the efficiency of our newly developed bicyclic bridgehead
phosphoramidite-based ligands L1 in this challenging hydro-
genation. Gratifyingly, initial screening revealed that most of
these new ligands were effective for the hydrogenation (Table
1, entries 1—S5), albeit with not so satisfactory enantioselectiv-
ity, with 2,4-di'Bu-substituted variant L1e generating 6a in 99%
yield with a promising enantioselectivity of 70% ee, superior to
all of the tested ligands (entry S). This result demonstrated the
potential of this new bicyclic design strategy. The presence of
tert-butyl groups at the ortho and para positions of the phenol
rings improves the z-accepting properties of phosphoramidite

Table 1. Optimization of Conditions for Rh-Catalyzed
Hydrogenation of 2-(1-Phenylvinyl)anilide Sa“

NHAC [Rh(COD),JBF, (1 mol %) NHAc
L* (1.1 mol %)
O O H,, additives O O
5a T (°C), solvent, 24 h 6a

entry L* T (°C)  solvent H, (MPa) yield (%)" ee (%)°
1 Lla 40 CH,Cl, 6 99 6
2 L1b 40 CH,Cl, 6 99 10
3 Lic 40 CH,Cl, 6 60 26
4 L1d 40 CH,Cl, 6 99 30
5 Lle 40 CH,Cl, 6 99 70
6 Lle 25 CH,Cl, 6 98 91
7 Lle 25 MeOH 6 99 15
8 Lle 25 toluene 6 99 31
9 Lle 25 dioxane 6 99 86
10 Lle 25 CH,Cl, 4 98 91
11 Lle 5 CH,Cl, 4 45 90
¢  Lle 5 CH,Cl, 4 95 95
13°¢ Lle S CH,Cl, 4 99 95
147 Lle 5 CH,CI, 4 98 94

“Reaction conditions: 5a (0.125 mmol, 1.0 equiv), [Rh(COD),]BF,
(1 mol %), L* (1.1 mol %), and additives (4 mol %) in 2 mL of
solvent under a H, atmosphere at the indicated temperature for 24 h.
“Isolated yield. “Enantiomeric excess value determined by chiral
HPLC. “Zn(OTf), as the additive. °Zn(NT£,), as the additive.’S/C
= 1000.
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by enhancing geometrical constraints throuGgh steric repulsion,
thus favoring the increase in reactivity.” The result also
indicated that the chirality at the ligand backbone is enough for
asymmetric control, and an additional chiral element in the
bicyclic phosphoramidite framework is not necessary. To
further improve the performance, we next optimized the
hydrogenation conditions. Decreasing the temperature to 25
°C resulted in a significant increase in the enantioselectivity to
91% ee without a compromise in reactivity (entry 6). The
following screening of the solvents such as MeOH, toluene,
and 1,4-dioxane revealed that all of these reaction media gave
inferior outcomes with respect to the ee value as compared
with CH,Cl, (entries 6—9). Decreasing the H, pressure to 4
MPa had no influence on the reactivity or enantioselectivity
(entry 10). However, an attempt to further improve the
performance by decreasing the reaction temperature to S °C
proved unsuccessful, leading to a decreased yield of only 45%
(entry 11). Recently, May et al. have reported that the addition
of several Lewis acids could dramatically improve the rate of
the Rh-catalyzed asymmetric hydrogenation.'' For this
purpose, we examined a series of Lewis acid additives, with
which Zn(OTf), and Zn(NTf,), were found to significantly
promote the hydrogenation as anticipated (entries 12 and 13,
respectively). With the addition of 4 mol % Zn(NTf,),, an
excellent performance was achieved even when the hydro-
genation was performed at a catalyst loading of 0.1 mol %,
demonstrating the efficiency of this catalytic system (entry 14).

With reaction conditions identified that lead to high yield
and enantioselectivity in model hydrogenation, we next sought
to establish the substrate scope for the hydrogenation with the
Rh/(S)-Lle catalyst, and representative results are listed in
Scheme 3. A range of 2-(1-arylvinyl)acetanilides Sa—t were
hydrogenated for the first time to give the corresponding chiral
acetanilides 6a—t, respectively, bearing an ortho-tertiary
benzylic stereocenter in nearly quantitative yields. The catalytic
system presented here showed a high tolerance to the
substitution pattern and electronic properties of the substituent
on the anilido moiety of substrates. A variety of para, meta,
ortho, and disubstituted anilide substrates (5a—1) were quite
hydrogenated in excellent enantioselectivities (92—99% ee).
The hydrogenation was sensitive to the substitution pattern on
the phenyl ring of the l-arylvinyl moiety. Thus, o-methyl-
substituted substrate Sm led to enantioselectivity much lower
than those of its para and meta analogues (Sn and So,
respectively).

The electronic properties of the substituent on the 1-
arylvinyl moiety had little effect on the enantioselectivity, and
all substrates with a para substituent were hydrogenated in
high to excellent enantioselectivities (90—96% ee). Hetero-
aromatic substrate St also worked well, resulting in the
corresponding hydrogenation product 6t in 91% ee. The
absolute configuration of 2-(1-arylethyl)acetanilides was
unambiguously determined by X-ray structure analysis of 6s,
to which an R configuration was assigned.”

The conformational orientation of a chiral bicyclic bridge-
head phosphoramidite-based hybrid diphosphorus ligand in its
coordinated form was established after obtaining an X-ray
crystal structure of the Rh(acac)[(S)-Llc] complex (Figure
1),” in which the bidentate coordination mode of (S)-L1c with
Rh was unambiguously confirmed. On the basis of our
experiments, and previous mechanistic studies of asymmetric
hydrogenation with hybrid bidentate-P ligands,”'* a transition
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Scheme 3. Substrate Scope”

NHAC  [Rh(COD),IBF, (1 mol %) NHAG
Ar N (S)-L1e (1.1 mol %) Ar X
| TR Zn(NTh,), (4 mol %) | R
5 H, (4 MPa) 6

5°C, CH,Cly, 24 h

! NHAc ! NHAc
6b 6¢c

99% vyield, 92% ee

! NHAc
6a

99% vyield, 95% ee 99% vyield, 95% ee

! NHAc NHAc NHAc
6d 6e OMe 6f Bu

99% vyield, 93% ee 99% vyield, 95% ee 99% vyield, 93% ee
! NHAc NHAc NHAc
6g F 6h CI 6i Br

99% vyield, 96% ee

NHAc
6]

99% vyield, 98% ee

99% vyield, 95% ee

! NHAc
6k

99% vyield, 97% ee

99% vyield, 99% ee
NHAc

sael
6l 0—/

99% yield, 96% ee

NHAc ! NHAc ! NHAc
6m 6n 60

99% yield, 41% ee 99% yield, 94% ee 99% yield, 90% ee

NHAc NHAc NHAc
e ‘c,‘ ‘Br‘ ‘
6p 6q 6r

99% vyield, 95% ee 99% vyield, 96% ee 99% vyield, 94% ee

| NHAC 3~ ‘{!, NHAG
5 ), .
PRGN :
-.J‘ e g \_s
6s N P~ 6t

99% vyield, 95% ee 97% yield, 91% ee
“Reaction conditions: 5 (0.125 mmol, 1.0 equiv), [Rh(COD),]BF,
(1.0 mol %), (S)-L1e (1.1 mol %), and Zn(NTf,), (4 mol %) in 2 mL
of CH,Cl, under a H, pressure of 4 MPa at S °C for 24 h. Yields of
isolated products are given. The enantiomeric excess was determined
by chiral HPLC.

state S-I is proposed to explain the observed stereochemistry as
shown in Figure 1.

In summary, the structurally rigid achiral bicyclic bridgehead
phosphoramidite as a superb component has been applied for
the first time in the design of chiral hybrid diphosphorus
ligands, with which a series of chiral hydrid phosphine—
phosphoramidite ligands have been developed. Remarkably, in
these ligands, the chiral element for asymmetric control is
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favored

Figure 1. Crystal structure of the Rh(acac)[(S)-L1c] complex (left)
and proposed model of stereochemistry (right).

installed in the ligand backbone, and the additional chirality in
the phosphoramidite framework is not required. Using these
new ligands, a highly enantioselective Rh-catalyzed hydro-
genation of 2-vinylanilides was realized, in which a catalytic
amount of Zn(NTf,), additives could dramatically improve the
reactivity, thus providing concise access to a variety of optically
active anilines bearing an ortho-tertiary benzylic stereocenter.
We believed that this design strategy should offer new
possibilities for the development and implementation of new
ligand classes in a large variety of selective transformations.
Further studies of this are underway in our laboratories and
will be reported in due course.
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