DICP Course 2 - Dalian, 2012 POWDER X-RAY DIFFRACTION Part II - X-Ray DIFFRACTION

 Supported by the Chinese Academy of SciencesCharles Kappenstein, Professor Emeritus, University of Poitiers, France

DALIAN INSTITUTE OF CHEMICAL PHYSICS,
CHINESE ACADEMY OF SCIENCES

Outline of the course

I - CRISTALLOGRAPHY
 II - X-RAY DIFFRACTION
 \Rightarrow 1. - INTRODUCTION
 2. - INTERACTION BETWEEN X-RAYS AND MATTER
 3. - DIFFRACTION BY A PERIODIC LATTICE

III - POWDER DIFFRACTOMETRY

1. INTRODUCTION

Objective of physical crystallography

\Rightarrow interaction between crystals and radiations
Type of radiation?

- photons
- electrons
- neutrons

Radiation wavelength \rightarrow same order of magnitude than interatomic distances $\sim 0.1 \mathrm{~nm}$
Two main processes:

- primary scattering process: general phenomenom for solid, liquid and gas
- secondary diffraction process: only for crystal, long distance order (> 1 nm)

Course will be limited to photons (X-rays radiation)
crystalline state = infinite lattice \otimes basis (asymmetric unit content)
$\otimes=$ convolution product
Diffusion in the direction defined by vector $\Delta \mathbf{k}^{*}$

$$
\mathrm{A}\left(\Delta \overrightarrow{\mathbf{k}}^{*}\right)=\int \rho(\overrightarrow{\mathrm{r}}) \exp (2 \pi \mathrm{i}(\Delta \overrightarrow{\mathbf{k}} * \cdot \overrightarrow{\mathrm{r}})) \mathrm{dv}
$$

$\mathrm{A}\left(\mathbf{\Delta k}^{*} *\right)=$ amplitude of the scattered wave

1. INTRODUCTION

One example: NaCl

NaCl powder X-ray diffraction pattern

two theta or 2θ (degrees)
Position of the diffraction peaks \rightarrow Bragg's law
Intensity $>$ structure factor
Profile \rightarrow crystallite size, strain, stress

Outline of the course

1. - INTRODUCTION

2. - INTERACTION BETWEEN X-RAYS AND MATTER

\rightarrow 2.1. - Fundamental processes

2.1.1. - Photoelectric effect
2.1.2. - Compton scattering
2.1.3. - Fluorescence
2.1.4. - Thomson scattering
2.2. - Absorption of X-rays
2.3. - Thomson coherent scattering
2.3.1. - Scattering by a single electron
2.3.2. - Scattering by an atom: atom scattering factor

2. - INTERACTION BETWEEN X-RAYS AND MATTER

2.1 - Four fundamental processes

- Photoelectric effect: core or valence electrons ejected from their levels \rightarrow low mean free path in matter (few nm); high mean free path in gas under very low pressure (high vacuum)
\rightarrow XPS (X-ray Photoelectron Spectroscopy)
- Compton scattering: inelastic collision between photon and electron, loss of X-ray energy
- Fluorescence: linked to photoelectric effect, emission of secondary photons
- Thomson scattering: coherent scattering in all direction \rightarrow diffraction

Absorption spectroscopy \rightarrow EXAFS (Extended X-rays Absorption Fine Structure)

Outline of the course

1. - INTRODUCTION

2. - INTERACTION BETWEEN X-RAYS AND MATTER

2.1. - Fundamental processes
2.1.1. - Photoelectric effect
2.1.2. - Compton scattering
2.1.3. - Fluorescence
2.1.4. - Thomson scattering
2.2. - Absorption of X-rays
2.3. - Thomson coherent scattering
2.3.1. - Scattering by a single electron
2.3.2. - Scattering by an atom: atom scattering factor

2.2 - Absorption of X-rays

Beer's law: $\quad \mathrm{I}=\mathrm{I}_{0} \exp -\mu \mathrm{l}$
l = thickness (in cm)
$\mu=$ linear absorption coefficient (in cm^{-1})
depends on:

- wavelength λ_{0}
- composition and density of the sample: $\mu=(\mu / \rho) \cdot \rho$
- $\mu / \rho=$ mass absorption coefficient (in $\mathrm{cm}^{2} \mathrm{~g}^{-1}$) $\rho=\operatorname{density(in~} \mathrm{g} \mathrm{cm}^{-3}$)

Remarks:

- for a powder, ρ is the apparent density to be determined from mass and volume
- for an element $\mathrm{i},(\mu / \rho)_{\mathrm{i}} \rightarrow$ independant of physical state, depends only on wavelength λ_{0}
- for a sample with mass fraction g_{i} (elemental composition)

$$
(\mu / \rho)=\Sigma g_{i} \cdot(\mu / \rho)_{i}
$$

For elemental mass absorption coefficient $(\mu / \rho)_{\mathrm{i}}$
see tables

2.2 - Absorption of X-rays

Ex. 1: determination of the mass absorption coefficient for CuO for $\lambda\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)$?

$$
(\mu / \rho)_{\mathrm{Cu}}=50.9 \mathrm{~cm}^{2} \mathrm{~g}^{-1} \quad(\mu / \rho)_{\mathrm{i}}=1.31 \mathrm{~cm}^{2} \mathrm{~g}^{-1}
$$

mass fraction of Cu and O ?

$$
\begin{aligned}
& g_{\mathrm{Cu}}=63.54 /(63.54+16.00)=0.7988 \\
& \mathrm{~g}_{\mathrm{O}}=16.00 /(63.54+16.00)=0.2012 \\
& (\mu / \rho)=(50.9 \times 0.7988)+(1.31 \times 0.2012)=\mathbf{4 0 . 9 2} \mathrm{cm}^{2} \mathbf{g}^{-1}
\end{aligned}
$$

Ex. 2: determination of the $\mathrm{I} / \mathrm{I}_{0}$ ratio for a Pb leaf with a thickness $1 \mathrm{~mm}, \quad \lambda\left(\mathrm{Mo} \mathrm{K} \mathrm{K}_{\alpha}\right)$ For lead $\rightarrow(\mu / \rho)_{\mathrm{Pb}}=120 \mathrm{~cm}^{2} \mathrm{~g}^{-1} \quad \rho=11.35 \mathrm{~g} \mathrm{~cm}^{-3}$

$$
\begin{aligned}
& \mu=(\mu / \rho) \cdot \rho=120 \times 11.35=1362 \mathrm{~cm}^{-1} \\
& \mu .1=1362 \times 0.01=13.62 \text { (dimensionless) } \\
& I / I_{0}=\exp (-13.6)=1.24 \times 10^{-6}
\end{aligned}
$$

Ex. 3: Calculate the $\mathrm{I} / \mathrm{I}_{0}$ ratio for a beryllium window, $\lambda\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)$
For Be $\rightarrow(\mu / \rho)_{\mathrm{Be}}=1.50 \mathrm{~cm}^{2} \mathrm{~g}^{-1} \quad \rho=1.85 \mathrm{~g} \mathrm{~cm}^{-3}$

$$
\mu=(\mu / \rho) \rho=1.50 \times 1.85=2.775 \mathrm{~cm}^{-1}
$$

$$
\mu .1=2.775 \times 0.1=0.2775
$$

$$
\mathrm{I} / \mathrm{I}_{0}=\exp (-0.2775)=0.758
$$

2.2 - Absorption of X-rays

Variation of the mass absorption coefficient $(\mu / \rho)_{i}$ with the wavelength λ

\rightarrow absorption edges due to photoelectronic effect
wavelength λ decreases \Rightarrow photon energy increases
when $\mathrm{h} v=\mathrm{E}_{\mathrm{B}} \quad\left(\mathrm{E}_{\mathrm{B}}=\right.$ binding energy of electron in atom)
\rightarrow the corresponding electron is ejected
\Rightarrow sharp increase of the mass absorption coefficient $(\mu / \rho)_{i}$
\rightarrow "absorption edge"
electron from K shell \rightarrow K-edge
electron from L shell \rightarrow L-edge 3 possible energy levels due to spin-orbit coupling
electron ejected from subshell $2 \mathrm{~s} \quad \rightarrow{ }^{2} \mathrm{~S}_{1 / 2} \quad$ absorption edge L_{I} electron ejected from subshell $2 \mathrm{p} \Rightarrow{ }^{2} \mathrm{P}_{1 / 2} \quad{ }^{2} \mathrm{P}_{3 / 2} \quad$ absorption edges $\mathrm{L}_{\text {II }}$ and $\mathrm{L}_{\text {III }}$

Outline of the course

1. - INTRODUCTION

2. - INTERACTION BETWEEN X-RAYS AND MATTER

2.1. - Fundamental processes
2.1.1. - Photoelectric effect
2.1.2. - Compton scattering
2.1.3. - Fluorescence
2.1.4. - Thomson scattering
2.2. - Absorption of X-rays
2.3. - Thomson coherent scattering
2.3.1. - Scattering by a single electron
2.3.2. - Scattering by an atom: atom scattering factor

2.3 - Thomson coherent scattering

2.3.1. - Scattering by a single electron

No modification of wavelength (elastic scattering) $\lambda_{0}=c / \nu_{0}$

Electron \rightarrow point charge without volume incident (primary) photons \rightarrow electron oscillates \rightarrow secondary photons in all directions Assumption: planar waves
Intensity of the scattered beam : $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{0} \mathrm{f}(2 \theta, \mathrm{~d})$

$$
\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{0}\left(\frac{\mathrm{R}^{2}}{\mathrm{~d}^{2}}\right)\left(\frac{1+\cos ^{2} 2 \theta}{2}\right) \quad \text { Polarization factor } \quad \mathrm{R}=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)\left(\frac{\mathrm{e}^{2}}{\mathrm{mc}^{2}}\right)
$$

R: classical radius of electron $=2.818 \times 10^{-13} \mathrm{~cm}$
$\mathrm{e}=$ charge of electron

$$
\mathrm{m}=\text { mass of electron }
$$

$\mathrm{c}=$ speed of light in vacuum

2.3 - Thomson coherent scattering

2.3.2. - Scattering by an atom: atom scattering factor

Neutral atom (atomic number Z):

- positive point charge Z^{+}(nucleus) surrounded by an electronic cloud.
- the electronic cloud extents from the nucleus up to several \AA
- local electron density $\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})$
- cartesian coordinates \rightarrow polar coordinates $\Rightarrow \rho(\mathrm{r}, \theta, \varphi)$

For a neutral atom

$$
\iiint_{V} \rho(x, y, z) d x d y d z=\iiint_{V} \rho(r, \theta, \varphi) 4 \pi r^{2} \sin \theta d r d \theta d \varphi=Z
$$

integration performed over the whole space.
For an atom we take into account the volume of the electronic cloud.
An elemental volume dV with electron density ρ works as a charged point for the primary photon.
The charge is $\rho \mathrm{dV}$.

2.3 - Thomson coherent scattering

2.3.2. - Scattering by an atom: atom scattering factor

For two elemental volumes dV 1 and dV 2 with electronic density $\rho 1$ and $\rho 2$, the scattered photons will interfere
Consider: - the distance $\mathrm{r}=|\mathbf{r}|$ between the two elemental volumes

- the unit vectors s_{0} and s defining incident and scattered directions.

The path difference δ for the secondary photons emitted by dV1 and dV2 is:

$$
\delta=\left(\mathrm{s}-\mathrm{s}_{0}\right) \cdot \mathbf{r}
$$

Or in term of wave vectors: $\delta / \lambda=\left(\mathbf{k}-\mathbf{k}_{0}\right) \cdot \mathbf{r}$
with $\left|s-s_{0}\right|=2 \sin \theta$
with $\left|\mathrm{k}-\mathrm{k}_{0}\right|=2 \sin \theta / \lambda$

Integration done over the whole volume occupied by the cloud $\boldsymbol{\rightarrow}$ for all \mathbf{r} values.

2.3 - Thomson coherent scattering

2.3.2. - Scattering by an atom: atom scattering factor
use polar coordinates r, θ and φ, starting from the nucleus $(r=0)$.
\Rightarrow use spherical symmetry for electron density: ρ depends only on distance r from nucleus.
Scattered amplitude A depends on $\sin \theta / \lambda$ (interference term) and ρ (electron density)

$$
\mathrm{A}=\mathrm{A}_{0} f(\sin \theta / \lambda, \rho)
$$

The scattered intensity is the square of amplitude

$$
\mathrm{I}=\mathrm{I}_{0} f^{2}(\sin \theta / \lambda, \rho)
$$

Remember, intensity is a scalar number and amplitude is a complex number
From electron density function \rightarrow function f for all atoms defined by atomic number Z
Function f : atom scattering factor \rightarrow characterizes the scattering power of the atoms Function $f=$ scattering power of atom / scattering power of electron
\Rightarrow depends on atomic number Z and term $\sin \theta / \lambda \Rightarrow$ plot $\mathrm{y}=f$ versus $\sin \theta / \lambda$
When $\theta=0 \rightarrow$ all elemental volumes emit in phase
$f=$ number of electrons in electronic cloud
\rightarrow for a neutral atom $=Z$

2.3 - Thomson coherent scattering

2.3.2. - Scattering by an atom: atom scattering factor

1) Compare the function f for the elements $\mathrm{H}, \mathrm{C}, \mathrm{Cl}$ and Cl^{-} Same element \Rightarrow size increases \rightarrow electron density decreases \Rightarrow factor f decreases too. 2) Compare the ions Cl^{-}and Ca^{2+}

Outline of the course

1. - INTRODUCTION

2. - INTERACTION BETWEEN X-RAYS AND MATTER
3. - DIFFRACTION BY A PERIODIC LATTICE
3.1. - Diffraction condition
3.2. - Ewald's sphere
3.3. - Bragg's relation
3.4. - Structure Factor
3.5. - Systematic absences
3.6. - Lorentz-polarization Factor Lp
3.7. - Debye-Waller factor DW
3.8. - Multiplicity factor Mhkl
3.9. - General relation
3.10. - Peak width - Scherrer's relation

3.1. - Diffraction condition

The next step is to consider the scattering process by a set of atoms in a periodic lattice
We can use the diffraction condition which was demonstrated previously:

\mathbf{r} is a vector defined in the direct space (crystal space) $\rightarrow \mathbf{r}=\mathrm{ua}+\mathrm{vb}+\mathrm{wc}$
$\Delta \mathbf{k}^{*}=\mathbf{k}-\mathrm{k}_{0}$ is a vector defined in the reciprocal space $\Rightarrow \Delta \mathbf{k}^{*}=\mathrm{ha} \mathbf{a}^{*}+\mathrm{kb} \mathbf{b}^{*}+\mathrm{lc}^{*}$ n is a relative integer.

Thus we can present these vectors in a geometrical way
The diffraction condition is: $\mathbf{\Delta k}$ * is a vector of the reciprocal lattice
\Rightarrow if the end of vector \mathbf{k}_{0} lies at the origin of the reciprocal lattice,
\Rightarrow the end of vector k must be another point of this reciprocal lattice.

3.2. - Ewald's sphere

We lie the crystal and the direct lattice at the center C of a sphere of radius $1 / \lambda$ We draw the same geometrical construction

The extremity of vector \mathbf{k}_{0} lies on the surface of the sphere The end of vector \mathbf{k} lies at the surface of the sphere too New formulation of the diffraction condition:
\Rightarrow «the end of the reciprocal vector $\Delta \mathrm{k} *$ must lie onto the sphere »
This sphere is called «Ewald's sphere»

3.2. - Ewald's sphere

Each time a point of reciprocal lattice lies onto the sphere: diffraction condition is satisfied. But is it the case?
Generally no, or by chance
How can we brought the reciprocal points onto the surface of the sphere?
First way \rightarrow move the crystal and you will move the reciprocal lattice Then points will enter or leave the sphere and therefore cross the surface
\Rightarrow the diffraction condition is satisfied and we observe diffracted beams
This is the case for single crystal diffractometry

3.2. - Ewald's sphere

Second way \rightarrow use a set of numerous very small crystals, with all possible random directions for direct lattice and therefore reciprocal lattice
\rightarrow this increase the chance to have reciprocal points lying on the Ewald's sphere surface
\Rightarrow powder diffractometry (XRD)
You have to mill the powder in order to get a grain size about 10 to $5 \mu \mathrm{~m}$

3.2. - Ewald's sphere

Example

3.2. - Ewald's sphere

Example

3.2. - Ewald's sphere

Example

3.2. - Ewald's sphere

Supplementary condition: resolution sphere with a radius of $2 / \lambda$
\Rightarrow to cross the Ewald's sphere, the reciprocal point must be inside the resolution sphere

3.3. - Bragg's relation

The reciprocal vector $\mathbf{O P}=\Delta \mathbf{k} *$ defines the line $[\mathrm{hkl}]$
The parameter of this line [h k l] is $\mathrm{N}_{\mathrm{hkl}}$ *

In the equilateral triangle COP, we have:

$\overrightarrow{\Delta \mathrm{k}} *=\overrightarrow{\mathrm{OP}} *=\mathrm{h} \overrightarrow{\mathrm{a}}^{*}+\mathrm{k} \overrightarrow{\mathrm{b}} *+\mathrm{l} \overrightarrow{\mathrm{c}}^{*}$

$$
\mathrm{N}_{\mathrm{hkl}}^{*}=1 / \mathrm{d}_{\mathrm{hkl}}=|\overrightarrow{\mathrm{OP}} *|
$$

$$
\sin \theta=\frac{|\overrightarrow{\Delta \mathrm{k}}| / 2}{\left|\overrightarrow{\mathrm{k}}_{0}\right|}=\frac{\mathrm{N}_{\mathrm{hk}}^{*} / 2}{1 / \lambda}
$$

Then we obtain the relation for the diffraction by a family of planes (hkl)
$\mathbf{2 d}_{\text {hkI }} \sin \theta=\lambda$

3.4. - Structure Factor

(amplitude of beam diffracted by atoms in the unit cell)
$\mathrm{F}_{\mathrm{hkl}}=$
(amplitude of beam scattered by a single electron)

$$
\overrightarrow{\mathrm{OP}}_{\mathrm{j}}=\mathrm{x}_{\mathrm{j}} \overrightarrow{\mathrm{a}}+\mathrm{y}_{\mathrm{j}} \overrightarrow{\mathrm{~b}}+\mathrm{z}_{\mathrm{j}} \overrightarrow{\mathrm{c}}
$$

Path difference between the beam from the origin and the beam from atom j, for the direction defined by the reciprocal vector $\Delta \mathbf{k}$ *
$\delta_{j}=h x_{j}+k y_{j}+\mathrm{lz}_{\mathrm{j}}$
Phase difference $\alpha_{j}=2 \pi \delta_{j}=2 \pi\left(\mathrm{hx}_{\mathrm{j}}+\mathrm{ky} \mathrm{y}_{\mathrm{j}}+\mathrm{lz} \mathrm{z}_{\mathrm{j}}\right)$
Structure factor: $\quad \mathrm{F}_{\mathrm{hkl}}=\sum_{\mathrm{j}} \mathrm{f}_{\mathrm{j}} \exp \left(\mathrm{i} \alpha_{\mathrm{j}}=\sum_{\mathrm{j}} \mathrm{f}_{\mathrm{j}} \exp \left[2 \pi \mathrm{i}\left(\mathrm{hx}_{\mathrm{j}}+\mathrm{ky}_{\mathrm{j}}+\mathrm{lz}_{\mathrm{j}}\right)\right]\right.$
$\mathrm{F}_{\mathrm{hkl}}$ is a complex number: $\mathrm{F}_{\mathrm{hkl}}=\mathrm{a}+\mathrm{ib} \quad \mathrm{F}_{\mathrm{hkl}} *=\mathrm{a}-\mathrm{ib}$
Intensity: $\quad \mathrm{I}_{\mathrm{hkl}}=\mathrm{K} . \mathrm{F}_{\mathrm{hk} l} \cdot \mathrm{~F}_{\mathrm{hk} 1} *=\mathrm{K} .\left|\mathrm{F}_{\mathrm{hk}}\right| 2$

$$
\mathrm{F}_{\mathrm{hkl}}=\mathrm{TF}(\rho(\overrightarrow{\mathrm{r}}))=\int \rho(\overrightarrow{\mathrm{r}}) \exp (-2 \pi \mathrm{i} \overrightarrow{\Delta \mathrm{k}} \cdot \overrightarrow{\mathrm{r}}) \mathrm{d} \tau
$$

3.5. - Systematic absences

Ex. 1: P lattice
\Rightarrow translations \mathbf{a}, \mathbf{b} and \mathbf{c}
there is no additional translation for an atom at the origin $\quad \rightarrow \mathrm{F}_{\mathrm{hkl}}=\mathrm{f}_{\mathrm{j}} \exp (2 \pi \mathrm{i} .0)=\mathrm{f}_{\mathrm{j}}$

Ex. 2: I lattice $\quad \rightarrow$ translations $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $(\mathbf{a}+\mathbf{b}+\mathbf{c}) / 2$
Two equivalent atoms are related by the additionnal translation, with coordinates:

$$
\begin{aligned}
& 000 \text { and } 1 / 21 / 21 / 2 \\
& \Rightarrow F_{h k l}=\left[f_{j} \exp (2 \pi \mathrm{i} \cdot 0)\right]+\left[f_{j} \exp 2 \pi \mathrm{i}(\mathrm{~h} / 2+\mathrm{k} / 2+\mathrm{l} / 2)\right] \\
& \Rightarrow \mathrm{F}_{\mathrm{hkl}}=\mathrm{f}_{\mathrm{j}}[1+\cos \pi(\mathrm{h}+\mathrm{k}+\mathrm{l})] \\
& \mathrm{h}+\mathrm{k}+\mathrm{l}=2 \mathrm{n} \Rightarrow \mathrm{~F}_{\mathrm{hkl}}=2 \mathrm{f}_{\mathrm{j}} \\
& \mathrm{~h}+\mathrm{k}+\mathrm{l}=2 \mathrm{n}+1 \quad \rightarrow \mathrm{~F}_{\mathrm{hkl}}=0 \Rightarrow \text { systematic absence }
\end{aligned}
$$

We use the well-known relation

$$
\exp (\mathrm{i} \varphi)=\cos (\varphi)+\mathrm{i} \sin (\varphi)(\text { de Moivre's formula) }
$$

3.5. - Systematic absences

Ex. 3. F lattice $\quad \rightarrow$ translations $\mathbf{a}, \mathbf{b}, \mathbf{c},(\mathbf{a}+\mathbf{b}) / 2,(\mathbf{b}+\mathbf{c}) / 2$ and $(\mathbf{c}+\mathbf{a}) / 2$
$\Rightarrow 4$ equivalents atoms at
$000 ; 1 / 21 / 20 ; 1 / 201 / 2$ and $01 / 21 / 2$.
$F_{h k l}=\left[f_{j} \exp (2 \pi \mathrm{i} .0)\right]+\left[\mathrm{f}_{\mathrm{j}} \exp 2 \pi \mathrm{i}(\mathrm{h}+\mathrm{k}) / 2\right]+\left[\mathrm{f}_{\mathrm{j}} \exp 2 \pi \mathrm{i}(\mathrm{k}+1) / 2\right]+\left[\mathrm{f}_{\mathrm{j}} \exp 2 \pi \mathrm{i}(\mathrm{l}+\mathrm{h}) / 2\right]$
$\mathrm{F}_{\mathrm{hkl}}=\mathrm{f}_{\mathrm{j}}[1+\cos \pi(\mathrm{h}+\mathrm{k})+\cos \pi(\mathrm{k}+\mathrm{l})+\cos \pi(\mathrm{l}+\mathrm{h})]$
Two possibilities:

$$
\begin{array}{ll}
\mathrm{h}, \mathrm{k} \text { et } \mathrm{l} \text { all odd or even } & \rightarrow \mathrm{F}_{\mathrm{hkl}}=4 \mathrm{f}_{\mathrm{j}} \\
\mathrm{~h}, \mathrm{k} \text { et } 1 \text { mixed } & \mathrm{F}_{\mathrm{hkl}}=0
\end{array}
$$

Exercice: for the cubic system, what are the diffracted beams with an intensity $\neq 0$

$h^{2}+k^{2}+l^{2}$	$h k l$	P	I	F	(yes or no)
1	100	yes	no	no	
2	110	yes	yes	no	
3	111	yes	no	yes	

3.6. - Lorentz-polarization Factor Lp

Lorentz factor
$\mathrm{L}=1 /\left(\sin ^{2} \theta \cos \theta\right)=2 /(\sin \theta \sin 2 \theta)$

Polarization factor

$$
\mathrm{p}=\left(1+\cos ^{2} 2 \theta\right) / 2
$$

Lp factor $\mathrm{Lp}($ powder $)=\left(1+\cos ^{2} 2 \theta\right) /(\sin \theta \cdot \sin 2 \theta)$

3.7. - Debye-Waller factor DW

Thermal vibrations of the atoms \rightarrow atomic scattering factors

$$
f_{j}=f_{j 0} \cdot \exp \left(-B_{j} \cdot \sin ^{2} \theta / \lambda^{2}\right)
$$

$\mathrm{f}_{\mathrm{j} 0}$ for atom at rest
Average value
$\mathrm{DW}=\exp \left(-\mathrm{B} \cdot \sin ^{2} \theta / \lambda^{2}\right) \quad$ (isotropic)
$\mathrm{B}=8 \pi^{2} \mu^{2}$
μ^{2} mean square amplitude of vibration

3.8. - Multiplicity factor \mathbf{M}_{hk}

Cubic system: $\mathrm{d}_{\mathrm{hkl}}=\mathrm{d}_{\mathrm{klh}}=\mathrm{d}_{\mathrm{lhk}}=\ldots$
Ex. what are the plane families with the same d-spacing, starting from (2 20)
(2 20), (-2 20), ($2-20$), ($-2-20$),
(2 02), (-2 0 2), ($20-2$), ($-20-2$),
(0 2 2), ($0-2$ 2), ($02-2$), ($0-2-2$)
$\Rightarrow \mathrm{M}_{\mathrm{hll}}=12$.

System	hkl	hhl	hh0	0 kk	hhh	hk0	h0l	0 kl	h00	0 k 0	001
cubic	48	24	12	(12)	8	24	(24)	(24)	6	(6)	(6)
tetragonal	16	8	4	(8)	(8)	8	8	(8)	4	(4)	2
hexagonal	24	12	6	(12)	(12)	12	(12)	12	6	(6)	2
orthorhombic	8	(8)	(8)	(8)	(8)	4	(4)	(4)	2	(2)	(2)
monoclinic	4	(4)	(4)	(4)	(4)	(4)	(2)	(4)	2	(2)	(2)
triclinic	2	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)

3.9. - General relation

$$
\mathrm{I}=\mathrm{I}_{0} \cdot \mathrm{~N} \cdot \mathrm{M}_{\mathrm{hkl}}\left|\cdot \mathrm{~F}_{\mathrm{hk} 1}\right|^{2} \frac{\mathrm{R}^{2}}{\mathrm{~d}^{2}}\left(\frac{1+\cos ^{2} 2 \theta}{\sin \theta \sin 2 \theta}\right) \cdot \exp \left(-\mathrm{B} \frac{\sin ^{2} \theta}{\lambda^{2}}\right)
$$

$\mathrm{I}_{0}=$ intensity of the incident X-ray beam
$\mathrm{N}=$ cell number
$\mathrm{M}_{\mathrm{hkl} 1}=$ multiplicity factor
$\mathrm{R}=$ classical radius of electron
$\mathrm{d}=$ distance from sample

$$
\left(\frac{1+\cos ^{2} 2 \theta}{\sin \theta \sin 2 \theta}\right) \quad \text { Lorentz-polarization factor }
$$

$$
\exp \left(-B \frac{\sin ^{2} \theta}{\lambda^{2}}\right)
$$

Debye-Waller factor

3.10. - Peak width - Scherrer's relation

A crystal has a limited size \rightarrow the points of the reciprocal space have volume

3.10. - Peak width - Scherrer's relation

A crystal has a limited size \rightarrow the points of the reciprocal space have volume \rightarrow the width of the diffraction peaks increases and the intensity decreases

Crystallite Size Measurement

Rh-Ni CeO2 powders

Decreasing crystallite size

$$
\tau=\mathbf{K} \lambda
$$

$$
\overline{\beta \cos \theta}
$$

$$
\begin{aligned}
& \tau=\text { particle size } \\
& \mathrm{K}=\text { shape factor } \\
& \text { (typically 0.85-0.9) } \\
& \lambda=\text { wavelength (Angstroms) } \\
& \beta=\underline{\text { corrected }} \text { FWHM (radians) } \\
& \theta=1 / 22 \theta \text { (peak position) }
\end{aligned}
$$

3.10. - Peak width - Scherrer's relation

```
determination of mean crystallite size }->\textrm{L}=0.94\lambda/\beta\operatorname{cos}
L = mean size of the crystallites (nm) }\quad\lambda=\mathrm{ wavelength (nm)
0= Bragg angle
\beta(20)= corrected Full Width at Half Maximum (FWHM) (radian)
```

FWHM
Peak position 2θ

Intensity \longrightarrow

Important for:

- Particle or grain size

2. Residual strain

Can also be fit with Gaussian, Lerentzian, Gaussian-Lerentzian etc.

