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1. INTRODUCTION

Objective of physical crystallography
� interaction between crystals and radiations

Type of radiation?
- photons
- electrons
- neutrons

Radiation wavelength� same order of magnitude than interatomic distances ∼ 0.1 nm
Two main processes:

- primary scattering process: general phenomenom for solid, liquid and gas
- secondary diffraction process: only for crystal, long distance order (> 1 nm)

Course will be limited to photons (X-rays radiation)

crystalline state = infinite lattice ⊗⊗⊗⊗ basis (asymmetric unit content) 
⊗ = convolution product
Diffusion in the direction defined by vector∆k*

A(∆k* ) = amplitude of the scattered wave

dv))r.*(i2exp()r(*)(A
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1. INTRODUCTION

One example: NaCl

Position of the diffraction peaks���� Bragg's law
Intensity ���� structure factor
Profile ���� crystallite size, strain, stress 



Outline of the course

1. – INTRODUCTION

2. – INTERACTION BETWEEN X-RAYS AND MATTER
2.1. - Fundamental processes

2.1.1. – Photoelectric effect
2.1.2. – Compton scattering
2.1.3. – Fluorescence 
2.1.4. – Thomson scattering

2.2. - Absorption of X-rays

2.3. - Thomson coherent scattering
2.3.1. – Scattering by a single electron
2.3.2. – Scattering by an atom: atom scattering factor



2. - INTERACTION BETWEEN X-RAYS AND MATTER
2.1 – Four fundamental processes

– Photoelectric effect: core or valence electrons ejected from their levels� low mean free
path in matter (few nm); high mean free path in gas under very low pressure (high vacuum)
� XPS (X-ray Photoelectron Spectroscopy)

– Compton scattering: inelastic collision between photon and electron, loss of X-ray energy

– Fluorescence: linked to photoelectric effect, emission of secondary photons

– Thomson scattering: coherent scattering in all direction � diffraction

Absorption spectroscopy� EXAFS (Extended X-rays Absorption Fine Structure)

Thomson scattering (λ0)

Compton scattering ( λ > λ0)

incident beam (I0, λ0) 

photoelectric effect
        (XPS)

absorption (I, λ0) 

fluorescence (λ' >> λ0) 

e-

e-

e-
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2.2 – Absorption of X-rays

Beer's law: I = I0 exp -µl
l = thickness  ( in cm)
µ = linear absorption coefficient (in cm-1)

depends on:
- wavelengthλ0

- composition and density of the sample:   µ = (µ/ρ) . ρ
- µ/ρ = mass absorption coefficient (in cm2 g-1) ρ = density(in g cm-3) 

Remarks:
- for a powder, ρ is the apparent density to be determined from mass and volume
- for an element i, (µ/ρ)i � independant of physical state, depends only on wavelengthλ0

- for a sample with mass fraction gi (elemental composition)
(µ/ρ) = Σ gi . (µ/ρ)i

For  elemental mass absorption coefficient (µ/ρ)i � see tables

transmitted beam (I, λ0)  incident beam (I0, λ0) 

l thickness



2.2 – Absorption of X-rays

Ex. 1: determination of the mass absorption coefficient for CuO for λ(Mo Kα) ?
(µ/ρ)Cu = 50.9 cm2 g-1 (µ/ρ)i = 1.31 cm2 g-1

mass fraction of Cu and O?
gCu = 63.54 / (63.54 + 16.00) = 0.7988
gO = 16.00 / (63.54 + 16.00) = 0.2012
(µ/ρ) = (50.9 x 0.7988) + (1.31 x 0.2012) = 40.92 cm2 g-1

Ex. 2: determination of the I/I0 ratio for a Pb leaf with a thickness 1 mm,    λ(Mo Kα)
For lead� (µ/ρ)Pb = 120 cm2 g-1 ρ = 11.35 g cm-3

µ = (µ/ρ) . ρ = 120 x 11.35 = 1362 cm-1

µ.l = 1362 x 0.01 = 13.62 (dimensionless)
I/I 0 = exp (- 13.6) = 1.24 x 10-6

Ex. 3: Calculate the I/I0 ratio for a beryllium window, λ(Cu Kα)
For Be� (µ/ρ)Be = 1.50 cm2 g-1 ρ = 1.85 g cm-3

µ = (µ/ρ) ρ = 1.50 x 1.85 = 2.775 cm-1

µ.l = 2.775 x 0.1 = 0.2775
I/I 0 = exp (- 0.2775) = 0.758



2.2 – Absorption of X-rays

Variation of the mass absorption coefficient (µ/ρ)i with the wavelengthλ

� absorption edges due to photoelectronic effect
wavelengthλ decreases� photon energy increases
when hν = ΕB (EB = binding energy of electron in atom)

� the corresponding electron is ejected
� sharp increase of the mass absorption coefficient (µ/ρ)i

� "absorption edge"
electron from K shell� K-edge
electron from L shell� L-edge 3 possible energy levels due to spin-orbit coupling

electron ejected from subshell 2s    � 2S1/2 absorption edge LI
electron ejected from subshell 2p    � 2P1/2 

2P3/2 absorption edges LII and LIII

(µ/ρ) 

λ

K

LI

LII

LIII

λ3

λ3
λ3
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No modification of wavelength (elastic scattering) λ0 = c/ν0

Electron� point charge without volume 
incident (primary) photons � electron oscillates� secondary photons in all directions
Assumption: planar waves
Intensity of the scattered beam : Ie = I0 f(2θ, d)

R: classical radius of electron = 2.818 x 10-13 cm
e = charge of electron m = mass of electron
c = speed of light in vacuum
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2.3 – Thomson coherent scattering
2.3.1. – Scattering by a single electron

(I0, λ0)

direction of incident beam

direction of scattered beam

d

2θ

(Ie, λ0)

oscillating
electron

E

B

Polarization factor



Neutral atom (atomic number Z): 
- positive point charge Z+ (nucleus) surrounded by an electronic cloud. 
- the electronic cloud extents from the nucleus up to several Å
- local electron density ρ(x,y,z)
- cartesian coordinates� polar coordinates� ρ(r, θ, φ) 

For a neutral atom

integration performed over the whole space.

For an atom we take into account the volume of the 
electronic cloud. 
An elemental volume dV with electron density ρ works as 
a charged point for the primary photon. 
The charge isρdV.
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2.3 – Thomson coherent scattering
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For two elemental volumes dV1 and dV2 with electronic density ρ1 and ρ2, the scattered 
photons will interfere 
Consider: - the distance r = |r | between the two elemental volumes 

- the unit vectors s0 and sdefining incident and scattered directions.

The path difference δ for the secondary photons emitted by dV1 and dV2 is:

δ = (s - s0).r            with |s –s0| = 2 sinθ
Or in term of wave vectors:   δ/λ = (k-k0).r with |k –k0| = 2 sin θ / λ

Integration done over the whole volume occupied by the cloud �for all r values. 

direction du rayonnement incident

direction du rayonnement diffusé(I0, λ0)

(I0, λ0)

(I, λ0)

(I, λ0)
dV1

dV2

r s
s0

2θ

2θ
Direction of incident beam

Direction of scattered beam

2.3 – Thomson coherent scattering
2.3.2. – Scattering by an atom: atom scattering factor

s

s0

s-s0
θ

θ



� use polar coordinates r, θ andφ, starting from the nucleus (r = 0). 
� use spherical symmetry for electron density:ρ depends only on distance r from nucleus. 

Scattered amplitude A depends on sinθ/λ (interference term) and ρ (electron density)
A = A0.f(sinθ/λ, ρ) 

The scattered intensity is the square of amplitude
I = I0.f2(sinθ/λ, ρ) 

Remember, intensity is a scalar number and amplitude is a complex number

From electron density function � function f for all atoms defined by atomic number Z

Functionf : atom scattering factor� characterizes the scattering power of the atoms
Functionf =  scattering power of atom / scattering power of electron
� depends on atomic number Z and term sinθ/λ � plot y = f versus sinθ/λ

When θ = 0 � all elemental volumes emit in phase 
f = number of electrons in electronic cloud � for a neutral atom = Z 

2.3 – Thomson coherent scattering
2.3.2. – Scattering by an atom: atom scattering factor



1) Compare the functionf for the elements H, C, Cl and Cl-

Same element� size increases� electron density decreases� factor f  decreases too.
2) Compare the ions Cl- and Ca2+
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3.1. - Diffraction condition
The next step is to consider the scattering process by a set of atoms in a periodic lattice

We can use the diffraction condition which was demonstrated previously: 

r is a vector defined in the direct space (crystal space)� r = ua + vb + wc
∆k* = k - k0 is a vector defined in the reciprocal space   � ∆k* = ha* + kb* + lc*
n  is a relative integer.

Thus we can present these vectors in a geometrical way 

The diffraction condition is:  ∆k* is a vector of the reciprocal lattice
� if the end  of vector k0 lies at the origin of the reciprocal lattice, 
� the end of vector k must be another point of this reciprocal lattice.

s/λ = k

s0/λ = k0

∆k* = k - k0 r . ∆k* = n
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3.2. – Ewald’s sphere
We lie the crystal and the direct lattice at the center C of a sphere of radius 1/λ
We draw the same geometrical construction

The extremity of vectork0 lies on the surface of the sphere
The end of vectork lies at the surface of the sphere too
New formulation of the diffraction condition:
� « the end of the reciprocal vector∆k* must lie onto the sphere »
This sphere is called « Ewald’s sphere »

k
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∆k* = R*
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3.2. – Ewald’s sphere
Each time a point of reciprocal lattice lies onto the sphere: diffraction condition is satisfied.
But is it the case?
Generally no, or by chance
How can we brought the reciprocal points onto the surface ofthe sphere?

First way � move the crystal and you will move the reciprocal lattice
Then points will enter or leave the sphere and therefore cross the surface
� the diffraction condition is satisfied and we observe diffracted beams

This is the case for single crystal
diffractometry

k

k0

∆k* = R*

C O

P



3.2. – Ewald’s sphere
Second way� use a set of numerous very small crystals, with all possible random 
directions for direct lattice and therefore reciprocal lattice
� this increase the chance to have reciprocal points lying on the Ewald’s sphere surface

� powder diffractometry (XRD)

You have to mill the powder in order to get a grain size about 10 to 5 µm
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3.2. – Ewald’s sphere
Example



3.2. – Ewald’s sphere
Example



3.2. – Ewald’s sphere
Example



3.2. – Ewald’s sphere
Supplementary condition:  resolution spherewith a radius of 2/λ
� to cross the Ewald’s sphere, the reciprocal point must be inside the resolution sphere
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3.3. – Bragg’s relation
The reciprocal vectorOP = ∆k* defines the line [h k l]
The parameter of this line [h k l] is Nhkl*

In the equilateral triangle COP, we have:

Then we obtain the relation for the diffraction by a family of planes (hkl) 
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3.4. - Structure Factor
(amplitude of beam diffracted by atoms in the unit cell)

Fhkl = ______________________________________________________________________

(amplitude of beam scattered by a single electron)

Path difference between the beam from the origin and the beamfrom atom j, for the direction 
defined by the reciprocal vector∆k*

δj =  hxj + kyj + lzj

Phase differenceαj = 2πδj = 2π (hxj + kyj + lzj) 

Structure factor:     Fhkl = Σj f j exp(i αj =  Σj f j exp [2πi (hxj + kyj + lzj)]

Fhkl is a complex number:  Fhkl = a + ib Fhkl* = a - ib

Intensity:     Ihkl = K.Fhkl.Fhkl* = K.|Fhkl|2 
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3.5. – Systematic absences
Ex. 1: P lattice � translations a, b andc

there is no additional translation
for an atom at the origin � Fhkl = fj exp(2πi . 0) = fj

Ex. 2: I lattice � translations a, b, c and (a + b + c) / 2
Two equivalent atoms are related by the additionnal translation, with coordinates:

0 0 0    and ½ ½ ½

� Fhkl = [f j exp(2πi . 0)] + [fj exp2πi (h/2 + k/2 + l/2)]

� Fhkl = fj [1 + cos π(h + k + l)]

h + k + l = 2n   � Fhkl = 2 fj
h + k + l = 2n + 1  � Fhkl = 0   � systematic absence

We use the well-known relation  exp(iφ) = cos(φ) + i sin(φ)  (de Moivre’s formula)



3.5. – Systematic absences
Ex. 3. F lattice � translations a, b, c, (a + b)/2, (b + c)/2 and (c + a)/2
� 4 equivalents atoms at
0  0  0 ; 1/2  1/2  0 ; 1/2  0  1/2  and 0  1/2  1/2. 

Fhkl = [f j exp(2πi . 0)] + [fj exp2πi (h + k)/2] + [fj exp2πi (k + l)/2] +[f j exp2πi (l + h)/2]

Fhkl = fj [1 + cos π(h + k) + cos π(k + l) + cos π(l + h)]

Two possibilities:
h, k et l   all odd or even � Fhkl = 4 fj
h, k et l   mixed � Fhkl = 0

Exercice: for the cubic system, what are the diffracted beams with an intensity≠ 0

h2+k2+l2 h k l     P     I      F       (yes or no)

1 100 yes no no
2 110 yes yes no
3 111 yes no yes



3.6. - Lorentz-polarization Factor Lp

Lorentz factor L = 1/(sin2θ cosθ) = 2/(sinθ sin2θ)

Polarization factor p = (1 + cos22θ)/2

Lp factor Lp(powder) = (1 + cos22θ)/( sinθ . sin2θ)
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3.7. - Debye-Waller factor DW
Thermal vibrations of the atoms� atomic scattering factors

f j = fj0 . exp(- Bj.sin2θ / λ2)

f j0 for atom at rest

Average value
DW = exp (- B.sin2θ / λ2)         (isotropic)

B = 8 π2µ2               

µ2 mean square amplitude of vibration



3.8. - Multiplicity factor M hkl

Cubic system: dhkl = dklh = dlhk = …

Ex. what are the plane families with the same d-spacing, starting from (2 2 0)
(2 2 0), (-2 2 0), (2 -2 0), (-2 -2 0), 
(2 0 2), (-2 0 2), (2 0 -2), (-2 0 -2), 
(0 2 2), (0 -2 2), (0 2 -2), (0 -2 -2) 

� Mhhl = 12.                             

System hkl hhl hh0 0kk hhh hk0 h0l 0kl h00 0k0 00l
cubic 48 24 12 (12) 8 24 (24) (24) 6 (6) (6)
tetragonal 16 8 4 (8) (8) 8 8 (8) 4 (4) 2
hexagonal 24 12 6 (12) (12) 12 (12) 12 6 (6) 2
orthorhombic 8 (8) (8) (8) (8) 4 (4) (4) 2 (2) (2)
monoclinic 4 (4) (4) (4) (4) (4) (2) (4) 2 (2) (2)
triclinic 2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)



3.9. – General relation

I0 = intensity of the incident X-ray beam
N = cell number
Mhkl = multiplicity factor
R = classical radius of electron
d = distance from sample

Lorentz-polarization factor

Debye-Waller factor
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3.10. – Peak width – Scherrer’s relation 
A crystal has a limited size� the points of the reciprocal space have volume



3.10. – Peak width – Scherrer’s relation 
A crystal has a limited size� the points of the reciprocal space have volume
� the width of the diffraction peaks increases and the intensity decreases



3.10. – Peak width – Scherrer’s relation 

� determination of mean crystallite size� L = 0.94 λ / βcosθ
L = mean size of the crystallites (nm)           λ = wavelength (nm)               θ = Bragg angle
β(2θ) = corrected Full Width at Half Maximum (FWHM) (radian) 


