DICP Course 2 - Dalian, 2012 POWDER X-RAY DIFFRACTION Part II – X-Ray DIFFRACTION Supported by the Chinese Academy of Sciences Charles Kappenstein, Professor Emeritus, University of Poitiers, France

DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Outline of the course

I – CRISTALLOGRAPHY

II – X-RAY DIFFRACTION → 1. – INTRODUCTION

2. – INTERACTION BETWEEN X-RAYS AND MATTER

3. - DIFFRACTION BY A PERIODIC LATTICE

III – POWDER DIFFRACTOMETRY

1. INTRODUCTION

Objective of physical crystallography

 \rightarrow interaction between crystals and radiations Type of radiation?

- photons
- electrons
- neutrons

 $A(\Delta k^*)$

Radiation wavelength \rightarrow same order of magnitude than interatomic distances ~ 0.1 nm Two main processes:

- primary scattering process: general phenomenom for solid, liquid and gas

- secondary diffraction process: only for crystal, long distance order (> 1 nm) Course will be limited to photons (X-rays radiation)

crystalline state = infinite lattice \otimes basis (asymmetric unit content)

 \otimes = convolution product Diffusion in the direction defined by vector Δk^*

$$A(\Delta \vec{k}^*) = \int \rho(\vec{r}) \exp(2\pi i (\Delta \vec{k}^*.\vec{r})) dv$$

$$\vec{s}/\lambda = \vec{k} \qquad \vec{\Delta k^*} = \vec{k} - \vec{k_0}$$

$$C \qquad \vec{s_0}/\lambda = \vec{k_0}$$

1. INTRODUCTION

One example: NaCl

Position of the diffraction peaks → Bragg's law Intensity → structure factor Profile → crystallite size, strain, stress

Outline of the course

1. – INTRODUCTION

2. – INTERACTION BETWEEN X-RAYS AND MATTER

→ 2.1. - Fundamental processes

- 2.1.1. Photoelectric effect
- 2.1.2. Compton scattering
- 2.1.3. Fluorescence
- 2.1.4. Thomson scattering

2.2. - Absorption of X-rays

2.3. - Thomson coherent scattering 2.3.1. – Scattering by a single electron

2.3.2. – Scattering by an atom: atom scattering factor

2. - INTERACTION BETWEEN X-RAYS AND MATTER

2.1 – Four fundamental processes

Photoelectric effect: core or valence electrons ejected from their levels → low mean free path in matter (few nm); high mean free path in gas under very low pressure (high vacuum)
 → XPS (X-ray Photoelectron Spectroscopy)

- Compton scattering: inelastic collision between photon and electron, loss of X-ray energy
- Fluorescence: linked to photoelectric effect, emission of secondary photons
- Thomson scattering: coherent scattering in all direction \rightarrow diffraction

Absorption spectroscopy → EXAFS (Extended X-rays Absorption Fine Structure)

Outline of the course

1. – INTRODUCTION

2. – INTERACTION BETWEEN X-RAYS AND MATTER

2.1. - Fundamental processes

- 2.1.1. Photoelectric effect
- 2.1.2. Compton scattering
- 2.1.3. Fluorescence
- 2.1.4. Thomson scattering

2.2. - Absorption of X-rays

2.3. - Thomson coherent scattering
2.3.1. - Scattering by a single electron
2.3.2. - Scattering by an atom: atom scattering factor

2.2 – Absorption of X-rays

Beer's law: $I = I_0 \exp -\mu I$

- l = thickness (in cm)

 μ = linear absorption coefficient (in cm⁻¹)

depends on:

- wavelength λ_0
- composition and density of the sample: $\mu = (\mu/\rho) \cdot \rho$
- μ/ρ = mass absorption coefficient (in cm² g⁻¹) ρ = density(in g cm⁻³)

Remarks:

- for a powder, ρ is the apparent density to be determined from mass and volume
- for an element i, $(\mu/\rho)_i \rightarrow$ independent of physical state, depends only on wavelength λ_0
- for a sample with mass fraction g_i (elemental composition)

 $(\mu/\rho) = \sum g_i \cdot (\mu/\rho)_i$

For elemental mass absorption coefficient $(\mu/\rho)_i$ \rightarrow see tables

2.2 – Absorption of X-rays

Ex. 1: determination of the mass absorption coefficient for CuO for λ (Mo K_{α})? (μ/ρ)_{Cu} = 50.9 cm² g⁻¹ (μ/ρ)_i = 1.31 cm² g⁻¹ mass fraction of Cu and O? $g_{Cu} = 63.54 / (63.54 + 16.00) = 0.7988$ $g_{O} = 16.00 / (63.54 + 16.00) = 0.2012$ (μ/ρ) = (50.9 x 0.7988) + (1.31 x 0.2012) = **40.92 cm² g⁻¹**

Ex. 2: determination of the I/I₀ ratio for a Pb leaf with a thickness 1 mm, λ (Mo K_{α}) For lead \Rightarrow (μ/ρ)_{Pb} = 120 cm² g⁻¹ $\rho = 11.35$ g cm⁻³ $\mu = (\mu/\rho) . \rho = 120 x 11.35 = 1362$ cm⁻¹ $\mu.1 = 1362 x 0.01 = 13.62$ (dimensionless) I/I₀ = exp (- 13.6) = 1.24 x 10⁻⁶

Ex. 3: Calculate the I/I₀ ratio for a beryllium window, λ (Cu K_{α}) For Be \rightarrow (μ/ρ)_{Be} = 1.50 cm² g⁻¹ ρ = 1.85 g cm⁻³ $\mu = (\mu/\rho) \rho = 1.50 x 1.85 = 2.775 cm⁻¹$ $\mu.1 = 2.775 x 0.1 = 0.2775$ $I/I_0 = \exp(-0.2775) = 0.758$

2.2 – Absorption of X-rays

Variation of the mass absorption coefficient $(\mu/\rho)_i$ with the wavelength λ

→ absorption edges due to photoelectronic effect wavelength λ decreases → photon energy increases when hv = E_B (E_B = binding energy of electron in atom) → the corresponding electron is ejected → sharp increase of the mass absorption coefficient (μ/ρ)_i → "absorption edge" electron from K shell → K-edge electron from L shell → L-edge 3 possible energy levels due to spin-orbit coupling electron ejected from subshell 2s → ${}^{2}S_{1/2}$ absorption edge L_I electron ejected from subshell 2p → ${}^{2}P_{1/2}$ ${}^{2}P_{3/2}$ absorption edges L_{II} and L_{III}

Outline of the course

1. – INTRODUCTION

2. – INTERACTION BETWEEN X-RAYS AND MATTER

2.1. - Fundamental processes

- 2.1.1. Photoelectric effect
- 2.1.2. Compton scattering
- 2.1.3. Fluorescence
- 2.1.4. Thomson scattering

2.2. - Absorption of X-rays

2.3. - Thomson coherent scattering
 2.3.1. – Scattering by a single electron
 2.3.2. – Scattering by an atom: atom scattering factor

2.3.1. – Scattering by a single electron

No modification of wavelength (elastic scattering) $\lambda_0 = c/v_0$

Electron \rightarrow point charge without volume incident (primary) photons \rightarrow electron oscillates \rightarrow secondary photons in all directions Assumption: planar waves

Intensity of the scattered beam : $I_e = I_0 f(2\theta, d)$

$$I_{e} = I_{0} \left(\frac{R^{2}}{d^{2}} \right) \left(\frac{1 + \cos^{2} 2\theta}{2} \right)$$

Polarization factor

$$\mathbf{R} = \left(\frac{1}{4\pi\varepsilon_0}\right) \left(\frac{\mathrm{e}^2}{\mathrm{mc}^2}\right)$$

R: classical radius of electron = 2.818×10^{-13} cm e = charge of electron m = mass of electron c = speed of light in vacuum

2.3.2. – Scattering by an atom: atom scattering factor

Neutral atom (atomic number Z):

- positive point charge Z^+ (nucleus) surrounded by an electronic cloud.

- the electronic cloud extents from the nucleus up to several Å
- local electron density $\rho(x,y,z)$

- cartesian coordinates \rightarrow polar coordinates $\rightarrow \rho(r, \theta, \phi)$

For a neutral atom

 $\iiint_{V} \rho(x, y, z) \, dx \, dy \, dz = \iiint_{V} \rho(r, \theta, \phi) \, 4\pi r^2 \sin \theta \, dr \, d\theta \, d\phi = Z$

integration performed over the whole space.

For an atom we take into account the volume of the electronic cloud.

An elemental volume dV with electron density ρ works as a charged point for the primary photon. The charge is ρ dV.

2.3.2. – Scattering by an atom: atom scattering factor

For two elemental volumes dV1 and dV2 with electronic density $\rho 1$ and $\rho 2$, the scattered photons will interfere

Consider: - the distance $r = |\mathbf{r}|$ between the two elemental volumes

- the unit vectors \mathbf{s}_0 and \mathbf{s} defining incident and scattered directions.

Integration done over the whole volume occupied by the cloud \rightarrow for all **r** values.

2.3.2. – Scattering by an atom: atom scattering factor

Juse polar coordinates r, θ and φ, starting from the nucleus (r = 0).
 Juse spherical symmetry for electron density: ρ depends only on distance r from nucleus.

Scattered amplitude A depends on $\sin\theta/\lambda$ (interference term) and ρ (electron density)

 $\mathbf{A} = \mathbf{A}_0 \mathbf{f} (\sin \theta / \lambda, \rho)$

The scattered intensity is the square of amplitude

 $\mathbf{I} = \mathbf{I}_0 \mathbf{f}^2(\sin\theta/\lambda, \rho)$

Remember, intensity is a scalar number and amplitude is a complex number

From electron density function \rightarrow function f for all atoms defined by atomic number Z

Function f: atom scattering factor \Rightarrow characterizes the scattering power of the atoms Function f = scattering power of atom / scattering power of electron \Rightarrow depends on atomic number Z and term $\sin\theta/\lambda \Rightarrow \operatorname{plot} y = f$ versus $\sin\theta/\lambda$

When $\theta = 0 \Rightarrow$ all elemental volumes emit in phase f = number of electrons in electronic cloud \Rightarrow for a neutral atom = Z

2.3.2. – Scattering by an atom: atom scattering factor

Compare the function *f* for the elements H, C, Cl and Cl⁻
 Same element → size increases → electron density decreases → factor f decreases too.
 Compare the ions Cl⁻ and Ca²⁺

Outline of the course

1. – INTRODUCTION

2. – INTERACTION BETWEEN X-RAYS AND MATTER

3. - DIFFRACTION BY A PERIODIC LATTICE

- 3.1. Diffraction condition
- 3.2. Ewald's sphere
- 3.3. Bragg's relation
- 3.4. Structure Factor
- 3.5. Systematic absences
- 3.6. Lorentz-polarization Factor Lp
- 3.7. Debye-Waller factor DW
- 3.8. Multiplicity factor Mhkl
- 3.9. General relation
- 3.10. Peak width Scherrer's relation

3.1. - Diffraction condition

The next step is to consider the scattering process by a set of atoms in a periodic lattice

We can use the diffraction condition which was demonstrated previously:

$$\vec{s}/\lambda = \vec{k} \qquad \vec{\Delta k^*} = \vec{k} - \vec{k_0} \qquad \vec{r} \cdot \vec{\Delta k^*} = n$$

$$C \qquad \vec{s_0}/\lambda = \vec{k_0}$$

r is a vector defined in the direct space (crystal space) \rightarrow **r** = u**a** + v**b** + w**c** $\Delta \mathbf{k}^* = \mathbf{k} - \mathbf{k}_0$ is a vector defined in the reciprocal space $\rightarrow \Delta \mathbf{k}^* = \mathbf{h}\mathbf{a}^* + \mathbf{k}\mathbf{b}^* + \mathbf{l}\mathbf{c}^*$ n is a relative integer.

Thus we can present these vectors in a geometrical way

The diffraction condition is: $\Delta \mathbf{k}^*$ is a vector of the reciprocal lattice \rightarrow if the end of vector \mathbf{k}_0 lies at the origin of the reciprocal lattice, \rightarrow the end of vector \mathbf{k} must be another point of this reciprocal lattice.

We lie the crystal and the direct lattice at the center C of a sphere of radius $1/\lambda$ We draw the same geometrical construction

The extremity of vector \mathbf{k}_0 lies on the surface of the sphere The end of vector \mathbf{k} lies at the surface of the sphere too New formulation of the diffraction condition: \rightarrow « the end of the reciprocal vector $\Delta \mathbf{k}^*$ must lie onto the sphere » This sphere is called « Ewald's sphere »

Each time a point of reciprocal lattice lies onto the sphere: diffraction condition is satisfied. But is it the case? Generally no, or by chance How can we brought the reciprocal points onto the surface of the sphere?

First way → move the crystal and you will move the reciprocal lattice
Then points will enter or leave the sphere and therefore cross the surface
→ the diffraction condition is satisfied and we observe diffracted beams

This is the case for single crystal diffractometry

Second way → use a set of numerous very small crystals, with all possible random directions for direct lattice and therefore reciprocal lattice
→ this increase the chance to have reciprocal points lying on the Ewald's sphere surface

→ powder diffractometry (XRD)

You have to mill the powder in order to get a grain size about 10 to 5 μ m

Example

Example

Supplementary condition: resolution sphere with a radius of $2/\lambda$ \rightarrow to cross the Ewald's sphere, the reciprocal point must be inside the resolution sphere

3.3. – Bragg's relation

The reciprocal vector $\mathbf{OP} = \Delta \mathbf{k}^*$ defines the line [h k l]

The parameter of this line [h k l] is N_{hkl}^*

In the equilateral triangle COP, we have:

$$\overrightarrow{\Delta k} * = \overrightarrow{OP} * = h\vec{a} * + k\vec{b} * + l\vec{c} *$$

$$\mathbf{N}_{hkl}^{*} = 1/d_{hkl} = \left| \overrightarrow{\mathbf{OP}} * \right|$$

$$\sin\theta = \frac{\left|\overline{\Delta k}\right|/2}{\left|\vec{k}_{0}\right|} = \frac{N_{hkl}^{*}/2}{1/\lambda}$$

Then we obtain the relation for the diffraction by a family of planes (hkl)

$$2d_{hkl}\sin\theta = \lambda$$

3.4. - Structure Factor

(amplitude of beam diffracted by atoms in the unit cell)

 $F_{hkl} =$

(amplitude of beam scattered by a single electron)

$$\overrightarrow{OP}_{j} = x_{j}\vec{a} + y_{j}\vec{b} + z_{j}\vec{c}$$

Path difference between the beam from the origin and the beam from atom j, for the direction defined by the reciprocal vector Δk^*

 $\begin{array}{ll} \delta_{j}=\ hx_{j}+ky_{j}+lz_{j}\\ \text{Phase difference} \quad \alpha_{j}=2\pi\delta_{j}=2\pi\ (hx_{j}+ky_{j}+lz_{j}) \end{array}$

Structure factor: $F_{hkl} = \sum_{j} f_{j} \exp(i \alpha_{j}) = \sum_{j} f_{j} \exp[2\pi i (hx_{j} + ky_{j} + lz_{j})]$

 F_{hkl} is a complex number: $F_{hkl} = a + ib$ $F_{hkl}^* = a - ib$

Intensity: $I_{hkl} = K.F_{hkl}.F_{hkl}^* = K.|F_{hkl}|^2$

$$F_{hkl} = TF(\rho(\vec{r})) = \int \rho(\vec{r}) \exp(-2\pi i \, \Delta \vec{k} \cdot \vec{r}) \, d\tau$$

3.5. – Systematic absences

Ex. 1: P lattice \rightarrow translations **a**, **b** and **c** there is no additional translation for an atom at the origin $\rightarrow F_{hkl} = f_i \exp(2\pi i \cdot 0) = f_i$

Ex. 2: I lattice \rightarrow translations **a**, **b**, **c** and $(\mathbf{a} + \mathbf{b} + \mathbf{c}) / 2$ Two equivalent atoms are related by the additionnal translation, with coordinates: 0 0 0 and $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

→
$$F_{hkl} = [f_j \exp(2\pi i \cdot 0)] + [f_j \exp(2\pi i \cdot (h/2 + k/2 + 1/2))]$$

$$\Rightarrow F_{hkl} = f_j [1 + \cos \pi (h + k + l)]$$

 $\begin{array}{c|c} h+k+l=2n & \rightarrow & F_{hkl}=2 & f_{j} \\ \hline h+k+l=2n+1 & \rightarrow & F_{hkl}=0 & \rightarrow & \text{systematic absence} \end{array}$

We use the well-known relation $\exp(i\varphi) = \cos(\varphi) + i \sin(\varphi)$ (de Moivre's formula)

3.5. – Systematic absences

Ex. 3. F lattice \Rightarrow translations **a**, **b**, **c**, $(\mathbf{a} + \mathbf{b})/2$, $(\mathbf{b} + \mathbf{c})/2$ and $(\mathbf{c} + \mathbf{a})/2$ \Rightarrow 4 equivalents atoms at 0 0 0; 1/2 1/2 0; 1/2 0 1/2 and 0 1/2 1/2.

 $F_{hkl} = [f_j \exp(2\pi i \cdot 0)] + [f_j \exp(2\pi i \cdot (h+k)/2)] + [f_j \exp(2\pi i \cdot (k+l)/2)] + [f_j \exp(2\pi i \cdot (l+h)/2)]$

 $F_{hkl} = f_i [1 + \cos \pi (h + k) + \cos \pi (k + l) + \cos \pi (l + h)]$

Two possibilities:

h, k et l all odd or even h, k et l mixed

Exercice: for the cubic system, what are the diffracted beams with an intensity $\neq 0$

$h^2 + k^2 + l^2$	h k l	P	Ι	F	(yes or no)
1	100 110	yes yes	no	no no	
2 3	110	yes	yes no	yes	

3.6. - Lorentz-polarization Factor Lp

Lorentz factor $L = 1/(\sin^2\theta \cos\theta) = 2/(\sin\theta \sin^2\theta)$

Polarization factor $p = (1 + \cos^2 2\theta)/2$

Lp factor

 $Lp(powder) = (1 + cos^2 2\theta)/(sin\theta \cdot sin 2\theta)$

3.7. - Debye-Waller factor DW

Thermal vibrations of the atoms \rightarrow atomic scattering factors

 $f_j = f_{j0} \cdot \exp(-B_j \cdot \sin^2\theta / \lambda^2)$

 f_{i0} for atom at rest

Average value

 $DW = \exp(-B.\sin^2\theta / \lambda^2) \qquad (isotropic)$

 $\mathbf{B} = 8 \ \pi^2 \mu^2$

 μ^2 mean square amplitude of vibration

3.8. - Multiplicity factor M_{hkl}

Cubic system: $\overline{d_{hkl}} = d_{klh} = d_{lhk} = \dots$

Ex. what are the plane families with the same d-spacing, starting from (2 2 0) (2 2 0), (-2 2 0), (2 -2 0), (-2 -2 0), (2 0 2), (-2 0 2), (2 0 -2), (-2 0 -2), (0 2 2), (0 -2 2), (0 2 -2), (0 -2 -2)

 \rightarrow M_{hhl} = 12.

System	hkl	hhl	hh0	0kk	hhh	hk0	hOl	0k1	h00	0k0	001
cubic	48	24	12	(12)	8	24	(24)	(24)	6	(6)	(6)
tetragonal	16	8	4	(8)	(8)	8	8	(8)	4	(4)	2
hexagonal	24	12	6	(12)	(12)	12	(12)	12	6	(6)	2
orthorhombic	8	(8)	(8)	(8)	(8)	4	(4)	(4)	2	(2)	(2)
monoclinic	4	(4)	(4)	(4)	(4)	(4)	(2)	(4)	2	(2)	(2)
triclinic	2	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)

3.9. – General relation

$$I = I_0 . N.M_{hkl} |F_{hkl}|^2 \frac{R^2}{d^2} \left(\frac{1 + \cos^2 2\theta}{\sin \theta \sin 2\theta} \right) . \exp\left(-B \frac{\sin^2 \theta}{\lambda^2}\right)$$

$$\begin{split} I_0 &= \text{intensity of the incident X-ray beam} \\ N &= \text{cell number} \\ M_{hkl} &= \text{multiplicity factor} \\ R &= \text{classical radius of electron} \\ d &= \text{distance from sample} \end{split}$$

Lorentz-polarization factor

$$\exp\!\!\left(-B\frac{\sin^2\theta}{\lambda^2}\right)$$

Debye-Waller factor

3.10. – Peak width – Scherrer's relation

A crystal has a limited size \rightarrow the points of the reciprocal space have volume

3.10. – Peak width – Scherrer's relation

A crystal has a limited size \rightarrow the points of the reciprocal space have volume \rightarrow the width of the diffraction peaks increases and the intensity decreases

Rh-Ni CeO2 powders

Κλ

If strain, other Methods:

Warren / Averbach Williamson-Hall plot

