DICP Course - Dalian, 2012 Preparation of solid catalysts Part 3

Supported by the Chinese Academy of Sciences

Charles Kappenstein, Professor Emeritus, University of Poitiers, France

DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Institut de Chimie des Milieux et Matériaux de Politiers IC2Mp

Preparation of catalysts 3

Dalian, March-April 2012

1/39

Outline

Introduction and general aspects

Interfacial chemistry – Electrostatic adsorption

Impregnation, drying, calcination and/or reduction

Sol-gel chemistry processing

Deposition – Precipitation – Coprecipitation

Shaping of solid catalysts – Monolith-based catalysts

Outline

Zeolite-based catalysts

<u>Characterization – High throughput experimentation</u>

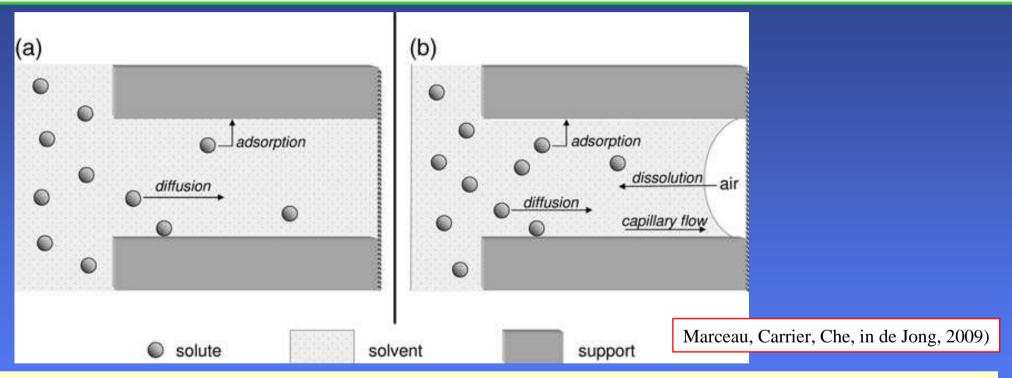
Case studies:

- Noble metal catalysts
- Methanol catalysts
- Hydrotreating catalysts
-

Outline

Impregnation, drying, calcination and/or reduction

1) Impregnation metal supported catalyst physical models Darcy's law, viscosity 2) Drying **Different distributions of active phase precursor Precursor-support interactions** Support dissolution and formation of mixed phase 3) Calcination **Role of calcination atmosphere** 4) Reduction **Temperature profile Role of temperature**


→ The solid support is in contact with a solution containing the active phase precursor Support: high surface area oxide (100 - 400 m².g⁻¹), high internal porosity (1 mL g⁻¹).
 Precursor: soluble in the solvent and bonded on the surface after the impregnation.
 Active phase: obtained after transformation of the precursor (activation of the catalyst).

Ex.: Ir/Al_20_3 catalyst for N_2H_4 decomposition, 30 to 40 wt.-% Ir Support: gamma alumina, specific surface area: 100-200 m².g⁻¹. Precursor: hexachloroiridic acid H₂IrCl₆ in aqueous solution. Impregnation procedure: wet impregnation or dry impregnation? The procedure has to be repeated to reach the expected loading content. American catalyst Shell-405 (now S-405): wet impregnation, procedure repeated 10 times French catalyst CNESRO: dry impregnation, procedure repeated 3 times Drying: fixation of the acid precursor on the basic hydroxyl groups present on the surface. Activation, reduction in H₂, at 200 and 400 °C \rightarrow formation of iridium crystallites The procedure is repeated after the drying step or after the reduction step

Physical models

2 phenomena

- diffusion of the solute into the pores (Fick's law)
- adsorption of solute onto the support (adsorption capacity, equilibrium constant)

Phenomena of transport involved in (a) wet impregnation, low concentration

and (b) dry impregnation, high precursor concentration

→ The adsorption is ruled by kinetics or by thermodynamics

→ The distribution of the precursor along the pellet depends on balance between diffusion and adsorption

Phenomena of transport involved in (a) wet impregnation, low concentration and (b) dry impregnation, high precursor concentration
→ The adsorption is ruled by kinetics or by thermodynamics
→ The distribution of the precursor along the pellet depends on balance between diffusion and adsorption

Precursor concentration $\searrow \rightarrow$ diffusion \searrow

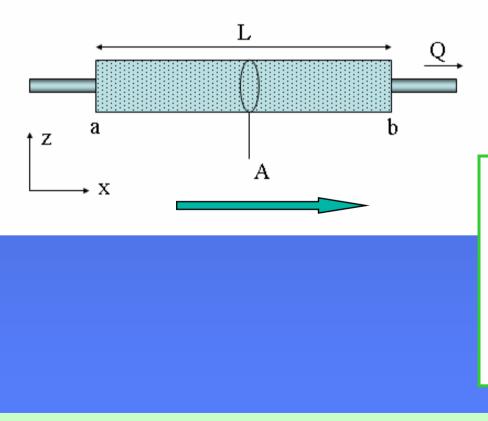
Wet impregnation

Characteristic time τ to attain equilibrium in a pellet of radius R depends on R^2

Ex.: pellet size 2 mm \rightarrow 1 mm τ is divided by 4 pellet size 2 mm \rightarrow 0.5 mm τ is divided by 16

→ The wet impregnation can take several hours

Dry impregnation


➔ Pressure driven capillary flow inside the empty pores

→ Depends on Darcy's law and solution viscosity

Preparation of catalysts 3

Flow of a fluid in a porous medium

(analogous to Ohm's law for electrical networks, Fick's law for diffusion or Fourier's law for heat conduction

$$Q = \frac{-kA}{\mu} \frac{(P_b - P_a)}{L}$$

Q: flow (m³ s⁻¹)

k: permeability (ability of a porous medium to allow fluid to pass through) (m²)

- A: cross sectional area of the flow (m²)
- μ : viscosity (Pa s)
- P_b - P_a : pressure drop (Pa)

viscosity

The dynamic viscosity μ (or $\eta)$ is the resistance of a fluid to flow

Ex.: water < oil < honey

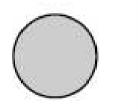
Unit: Pa s

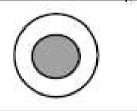
 $\begin{array}{ll} P \ (Poise), \ from \ Poiseuille, \ a \ French \ physicist);\\ cP \ (centipoise) & 1 \ cP = 1 \ mPa \ s \end{array}$ $\begin{array}{ll} Dynamic \ viscosity \ of \ water \ (20 \ ^{\circ}C): \ 0.001002 \ Pa \ s = 1.002 \ cP \end{array}$ $Kinematic \ viscosity \ v = \mu/\rho \ (m^2 \ s^{-1}) \end{array}$

→ the viscosity is an important parameter to control the impregnation:

Low viscosity → uniform impregnation

High viscosity \rightarrow nonuniform impregnation


Bitumen (Pitch) drop experiment viscosity approximately 230 billion (2.3×10¹¹) times that of water!!



Egg-shell

Egg-yolk

Influence of the conditions of impregnation and drying

Egg-shell

Strong adsorption of the precursor during impregnation Impregnation with a very viscous solution Slow drying regime, in the case of solutions of low concentration and viscosity, or weakly adsorbing precursors

Uniform

Precursors and competitors equally interacting with the surface Weakly interacting precursor + drying at room temperature Drying a concentrated, viscous solution (e.g., addition of hydroxyethyl cellulose)

Egg-yolk

Competitor interacting more strongly with the surface than the precursor

Fast drying regime with predominant back-diffusion

Marceau, Carrier, Che, in de Jong, 2009)

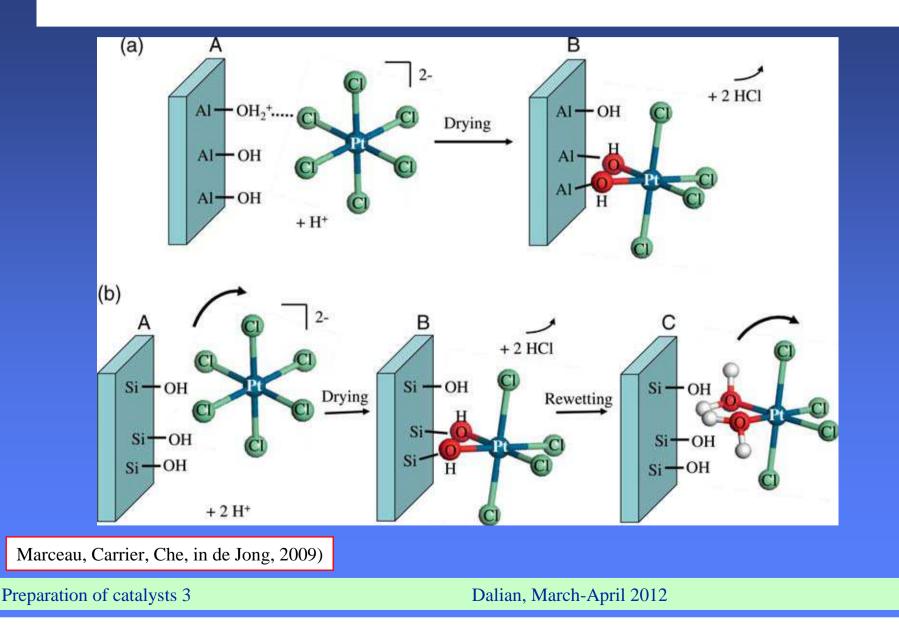
pH adjusters: HNO₃, R-CO₂H, NH₃

Low concentration

The precursor-support interaction is the driving force for adsorption

High concentration

The species interacting with surface act as seeds for crystallization upon drying


Two main types of interaction

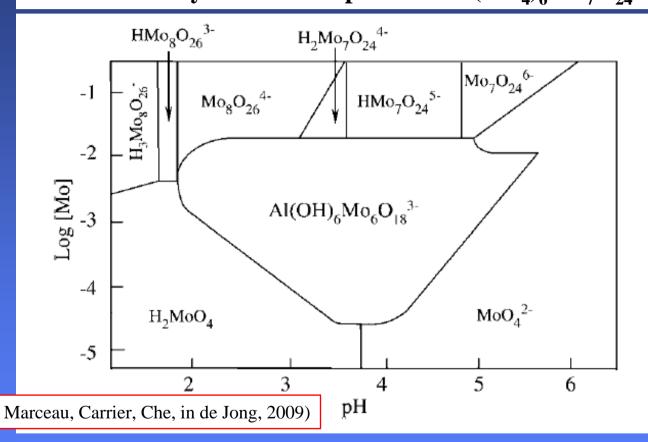
- Electrostatic interaction

- Grafting through ligand substitution Ex.: $2 \equiv SiOH + [Ni(NH_3)_6]^{2+} \rightarrow (\equiv SiO)_2Ni(NH_3)_4] + 2 NH_4^+$

Precursor – support interactions

Another exemple: [PtCl₆]²⁻

Influence of the conditions of impregnation and drying on the formation of extended mixed phases


Support	Composition of the impregnation solution	Conditions of impregnation	Conditions of drying	Mixed phase
SiO ₂	Ni(II) nitrate	IW, $t = 2 h$	$T = 90^{\circ}C, t \ge 72 h$	Ni(II) phyllosilicate
	Ni(II) nitrate + NH ₄ NO ₃ + NH ₃	<i>IW</i> , $pH \ge 6.9$	$T = 80-120^{\circ}C$, t = 15 h	Ni(II) phyllosilicate
	Mg(II) nitrate + NH4NO3 + NH3	<i>ES</i> , $pH > 8$, $t = 15 h$	$T = 120^{\circ}C$, $t = 15 h$	Mg(II) hydrous silicate

Marceau, Carrier, Che, in de Jong, 2009)

Preparation of catalysts 3

Ex.: MoO_x/Al₂O₃

To reach 10 wt.-% Mo \rightarrow a precursor solution 1 to 2 mol L⁻¹ for dry impregnation \rightarrow use of a very soluble Mo-precursor: $(NH_4)_6Mo_7O_{24}$

Possible formation of a mixed oxide [Al(OH)₆Mo₆O₁₈]³⁻ in solution and support

Preparation of catalysts 3

Drying-Calcination Support dissolution and formation of mixed phase Ex.: MoO_x/Al₂O₃ **Influence of contact time** Oxide/water contact time Short Long Mo7024 Al(OH)6M060183-NH NH_4^+ Precipitation Deposition of 500°C 500°C poorly organized (NH4)6[Mo7O24 MoO₂ **Alumina surface**

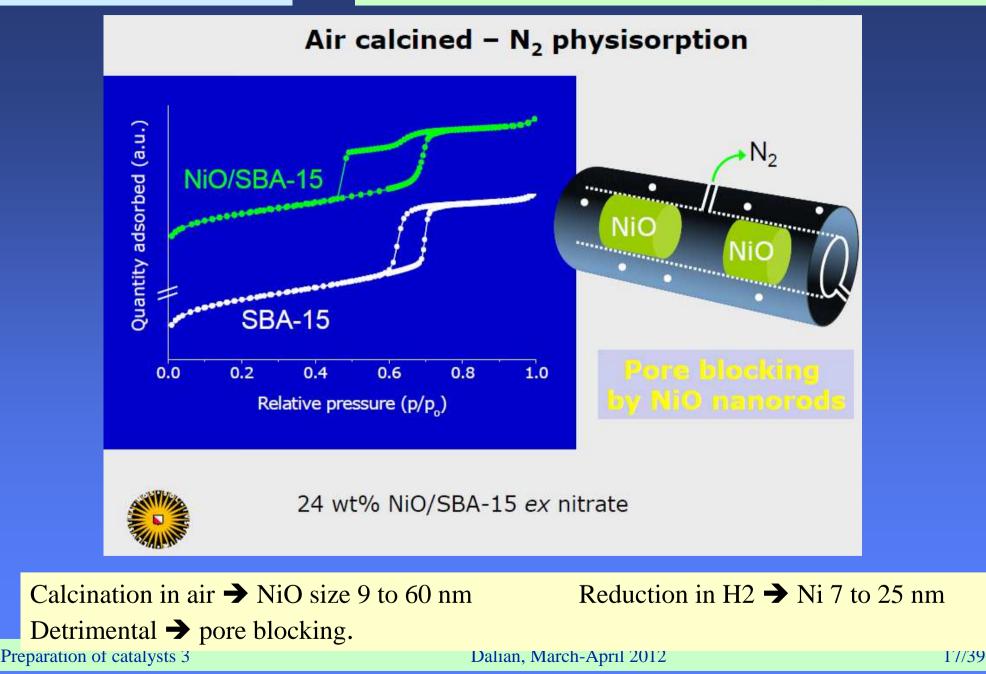
Marceau, Carrier, Che, in de Jong, 2009)

Preparation of catalysts 3

Ex.: NiO/SBA-15 Loading 24 wt.-% NiO Objective → NiO 4 nm after calcination

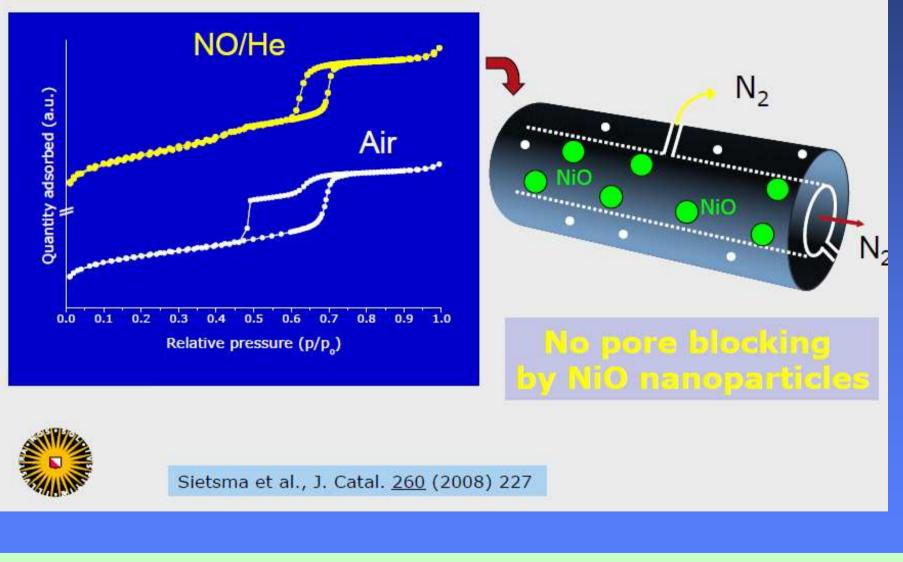
SBA-15 Porous volume: 1 mL g⁻¹ Pore diameter: 9 ± 0.5 nm

```
Dry impregnation, solution of Ni(NO_3)_2 4.2 mol L<sup>-1</sup>
```

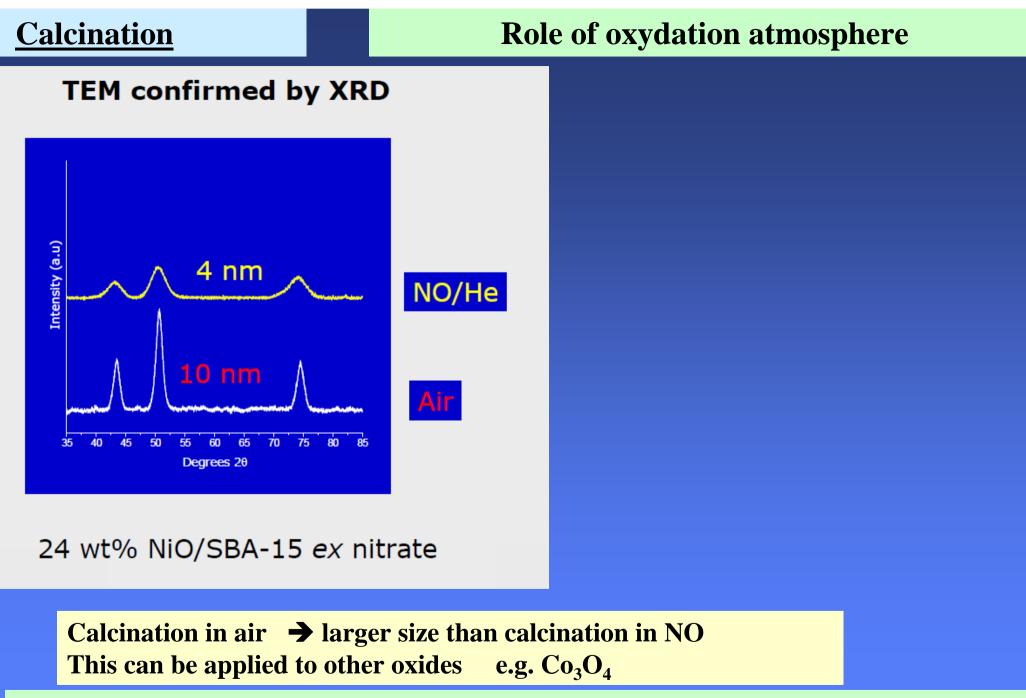

```
Drying 120 °C
After drying: formation of Ni<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>(OH)<sub>4</sub> in mesopores
```

```
Calcination 450 °C
Ni<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>(OH)<sub>4</sub>(s) \rightarrow 3 NiO(s) + 2 NO<sub>2</sub>(g) + 2 H<sub>2</sub>O(g) + 1/2 O<sub>2</sub>(g)
```

```
Reduction 450 °C 5 vol.-% H<sub>2</sub>/He
```

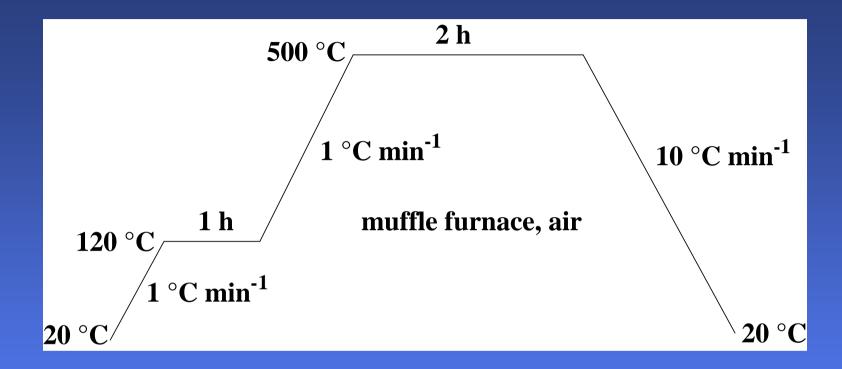

Preparation of catalysts 3

Role of oxydation atmosphere



Role of oxydation atmosphere

Calcination in NO/He → no pore blocking

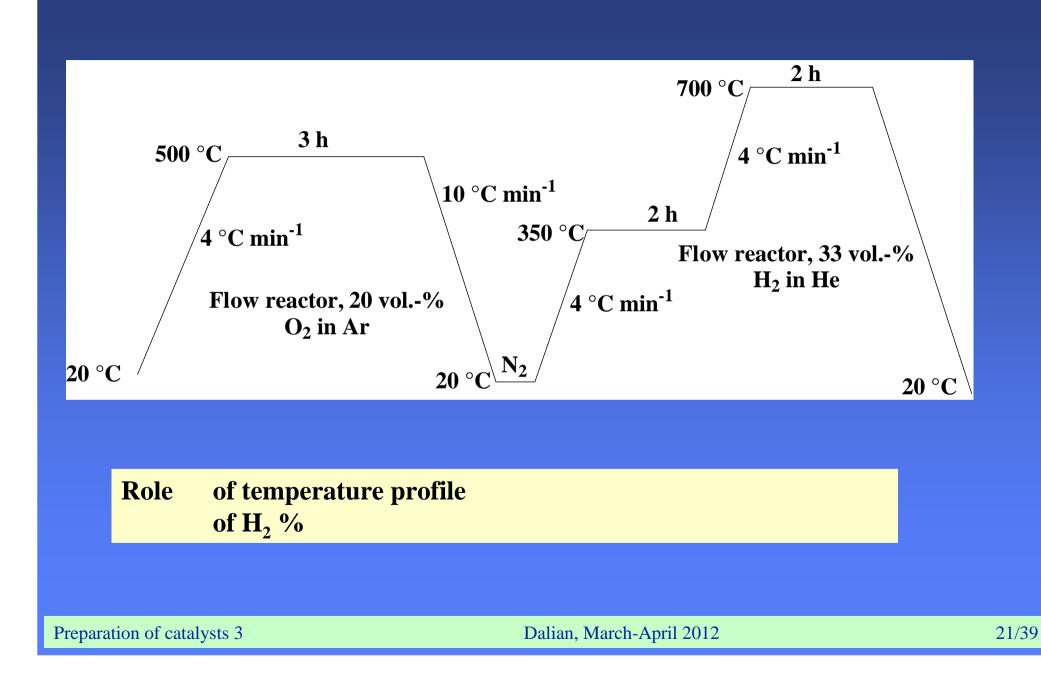


Preparation of catalysts 3

Preparation of catalysts 3

Temperature profile

Thermal treatment of monoliths after acid washing


Preparation of catalysts 3

Dalian, March-April 2012

20/39

Reduction

Temperature profile

