A - Transformation of anatase into rutile

Anatase and rutile are two distinct phases of titanium dioxide TiO_{2}. The stable phase is rutile.

1. Structural study

Anatase: tetragonal system. (see PDF file)
1.1 Determine the Bravais lattice. Determine the number Z of chemical formula per unit cell.
1.2 Determine the position of the most intense diffraction peak for $\lambda\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)$.

Rutile: tetragonal system (see PDF file)
1.3 Determine the Bravais lattice.
1.4 Determine the indices and the line parameter of the line defined by the points 100 and 112 .
1.5 Determine the angle between the lines [10ll 00 and $\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]$.
1.6 Determine the indices of the plane family containing the lines [1000] and [112]. $\left.1 \begin{array}{ll}1 & 2\end{array}\right]$.
1.7 Determine the Miller indices of the plane containing the points 100,112 and -100 .

2. Experimental study

The sample holder is a circular silicon wafer (face 511) with diameter 50 mm . The powder is sieved and homogeneously spread on the wafer on a circular area with diameter 35 mm . The recording parameters are:

- Sample holder:
- Mass of the sample:
- Diameter of the sample:
- recording :
- step :
- dwell time for one step :
- $\lambda\left(\mathrm{CuK}_{\alpha 1}\right)$:
- Fixed slit opening
- Sample rotation
2.1 What is the time length of the record?
2.2 Determine the position of the diffraction peak of the wafer (Si , cubic, $\mathrm{a}=5.4309 \mathrm{~A}$) The apparent density of the powder on the wafer is estimated about $2.3 \mathrm{~g} . \mathrm{cm}^{-3}$.
2.3 Determine the thickness on the sample on the wafer.
2.4 Determine the linear absorption coefficient and the average penetration length of the X-ray beam. What conclusion can you infer?
The irradiated area of the sample is a rectangle with variable length and fixed width 12 mm .
2.5 What is the maximum length of the irradiated area?
2.6 What is the minimum 2θ angle to avoid the irradiated part to exceed the area of the
sample? Radius of the goniometer circle 200 mm ; opening slit 0.6°.

3. Data analysis

Diffractograms of three samples treated respectively at 500, 600 and $800^{\circ} \mathrm{C}$ (Fig. 1).

3.1 What are the Miller indices of the most intense peaks for each phase?
3.2 Discuss the evolution of the diffractograms.
3.3 For an equimolar mixture of each phase, determine the intensity ratio $I_{\text {rutile }} / I_{\text {anatase }}$ (largest peak of each phase) from the PDF files.

Fig. 2 displays an enlargement of the diffractogram.
3.4 Taking the height of a diffraction peak as a measure of the intensity, determine the percentage of each phase for the three samples.
3.5 How many experimental points define the diffraction peaks for the sample treated at $600^{\circ} \mathrm{C}$? Conclusion.
3.6 Give an estimation of the average size of the anatase crystallites at $500^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$. Conclusion.

4. Study of the background.

Fig. 3 presents the diffractogram of the sample treated at $500^{\circ} \mathrm{C}$, for the 2θ range 28 to 35°.
4.1 How many experimental data in this range?

A statistical analysis of these data gave the following results:
Minimum: 3 maximum: 22 mean: 11.57 standard deviation: 3.39
4.2 Do these values agree with a Gaussian background corresponding to a counting statistic?

On the Fig. 3, draw the horizontal lines corresponding to the mean value and to the $\pm 2 \sigma$ space below and above the mean value.
4.3 How many points you expect outside the $\pm 2 \sigma$ space? Is it in agreement with the experimental data?

Good luck

PDF Anatase

PDF rutile

B - Analysis of chalk used at University

The diffractogram of the white chalk used in France and in Rumania is given in Annex. The recording parameters are:

- Sample holder:
- Mass of powder:
- Volume of powder:
- Diameter:
- record:
- step:
- dwell time per step:
- $\lambda\left(\mathrm{CuK}_{\alpha 1}\right)$:
- Fixed slit
standard (plastic)
528 mg
$778 \mathrm{~mm}^{3}$
24 mm
5 to $80^{\circ} 2 \theta$
$0,02^{\circ} 2 \theta$
1 s
1.5405981 £
1°

The major species of the chalk used in France is calcium carbonate CaCO_{3} (calcite, see PDF sheet) whereas it is calcium sulfate dehydrate $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (gypsum, see PDF sheet) .

1. Study of the diffractogram

1.1 Determine the time length of the record.
1.2 Determine the d-spacing of the peak plotted below.
1.3 How many experimental points are used to draw this peak? Is this number sufficient for a profile study?
1.4 From this peak, determine the mean crystallite size for the phase calcite.

A careful examination of the PDF sheet and the experimental d-spacing show a systematic shift between these values. This shift can be assigned to a sample displacement.
1.5 From the most intense peak $(\mathrm{d}=3.05597 \AA)$, determine the direction and the value of
this displacement.
1.6 Determine the correction to be done for the last diffraction peak ($\mathrm{d}=1.88155 \AA$). Perform this correction and compare with the value in the PDF sheet.

2. Study of the calcite phase

The Bravais lattice in the PDF sheet is R (rhombohedral), but the data of the unit cell correspond to a hexagonal cell.
2.1 Define the cell parameters and determine the volume.
2.2 Determine the number of formula in the cell.
2.3 Another species is present (hydrated boehmite) and is used as a binder between the calcite particles. What can you say about this species?
3. C - Absorption of X-ray
3.1 Determine the mass absorption coefficient and linear absorption coefficient for calcite powder.
3.2 Determine the mean penetration length of X-ray for this sample.
3.3 Determine the depth of the sample holder. Is this sample holder adapted for precise intensity measurements?

4. Study of the gypsum phase (monoclinic system)

4.1 What are the translations associated to a Bravais lattice C?
4.2 What are the corresponding systematic absences?
4.3 Determine the Bravais lattice for gypsum phase.

Bon courage

Diffractograms

C - Reference for powder XRD

Silicon powder reference from NIST (National Institute for Standards and Technology, Standard Reference Materials 640d) is a reference for diffraction peak position and profile for powder XRD. The list of the peaks (given automatically by the computer), the diffractogram with enlargements and the PDF sheet of silicon are given after the text. The recording conditions are as follows:

2 θ range:	5 to 132°
Step:	0.02°
Dwell time:	1 s
X-ray source:	$\mathrm{Cu} \mathrm{K}_{\alpha}$
Fixed aperture slit:	1°
Sample holder:	plastic
Sample diameter	25 mm
Thickness:	1 mm
Sample mass:	684 mg

5. Conditions of the record

5.1 Determine the time length of the record.
5.2 Determine the apparent density of the silicon sample
5.3 Determine the linear absorption coefficient and the mean penetration depth.
5.4 Is the sample holder adapted for this record?

6. Data analysis

6.1 From peak $n^{\circ} 9$, calculate the wavelength used for the automatic determination of the d -spacing.
The list contains 10 diffraction peaks, but they are not all displayed on the PDF sheet of silicon.
6.2 Could you give an explanation?

The precise wavelength for $\lambda\left(\mathrm{Cu} \mathrm{K}_{\alpha 1}\right)$ is $1.540598 \AA$
6.3 Determine the value of the wavelength $\lambda\left(\mathrm{Cu} \mathrm{K}_{\alpha 2}\right)$ from the diffraction peaks 11 and 12 at 106.683 and 107.053°. What is the interest to choose these peaks?
A more precise analysis of the diffraction peaks, taking into account the $\mathrm{K}_{\alpha 1}$ and $\mathrm{K}_{\alpha 2}$ components, gave the following results corresponding to the component $\mathrm{K}_{\alpha 1}$:

peak 1	28.392°	peak 5	76.345°
peak 2	47.263°	peak 7	87.999°
peak 3	56.087°	peak 9	94.925°
peak 4	69.091°	peak 11	106.683°

6.4 Determine the d-spacing corresponding to the peaks $2,4,7,9$ and 11
6.5 For each peak, determine the cell parameter of the cubic cell; determine the mean value and the standard deviation.
6.6 Compare the experimental mean value with the value given with the reference $\mathrm{a}=$ $5.43123 \pm 0.00008 \AA$ A. Conclusion
6.7 Are the values of the cell parameter random or could you detect a systematic error?

7. The face centered cubic structure of silicon

7.1 Define the translations of the Bravais lattice F.
7.2 What is the condition on the Miller indices to observe the diffraction peaks (no demonstration)
7.3 What are the peaks satisfying this condition but not present in the PDF sheet and in the diffractogram?
We can deduce that there is a second condition on the Miller indices to explain the absence of these peaks. This condition is related to the structure of silicon (diamond-type structure).
The structure of silicon displays two independent Si atoms with coordinates 000 and $1 / 41 / 41 / 4$. The remaining atoms in the unit cell are obtained from the translations linked to the Bravais lattice F.
7.4 Determine the structure factor for the two independent atoms and show that the second condition is:

- when h, k and l are even: $\quad \mathrm{h}+\mathrm{k}+\mathrm{l}=4 \mathrm{n}$
- when h, k and l are odd no specific condition

8. Standardization of the powder diffractometer

8.1 From the cell parameter of silicon $(a=5.43123 \AA)$, determine the 2θ values corresponding to the diffraction peaks 1 to 5 for $\lambda\left(\mathrm{Cu} \mathrm{K}_{\alpha 1}\right)$.
8.2 Write a correction table with the following columns:

Peak \# (hkl) calculated 2θ observed 2θ difference
8.3 What can you say about the difference
8.4 Correct the 2θ values for two peaks measured on another sample respectively at 35.125° and 62.453°

