DICP Course - Dalian, 2012 Preparation of solid catalysts Part 8

Supported by the Chinese Academy of Sciences

Charles Kappenstein, Professor Emeritus, University of Poitiers, France

DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Preparation of catalysts 8

Dalian, March-April 2012

1/xx

Introduction and general aspects

Interfacial chemistry – Electrostatic adsorption

Impregnation, drying, calcination and/or reduction

Sol-gel chemistry processing

Deposition – Precipitation and Coprecipitation

Bimetallic catalysts

Shaping of solid catalysts – Monolith-based catalysts

Zeolite-based catalysts

Ordered mesoporous materials

Case studies:

- Noble metal catalysts
- Methanol catalysts
- Hydrotreating catalysts

Zeolite-based catalysts

1) Introduction

- hydrothermal synthesis

2) Acidity

- zeolites
- aluminophosphates

3) Synthesis

- overall steps in zeolite crystallization
- model for zeolite growth
- aluminophosphates

Introduction

Zeolite = "boiling stone"

Definition: crystalline material with micropores and cation-exchange capacity, insoluble in water and with sufficient thermal stability About 200 different framework types

Most important zeolites:

- ultrastable Y (USY) (FAU = faujasite)
- ZSM-5 (MFI), ZSM-35 (FER = ferrierite) (ZSM = Zeolite Socony Mobil)
- mordenite (MOR)
- zeolite omega (MAZ = mazzite)
- SAPO-34 (CHA = chabazite)

Applications: FCC: fluid catalytic cracking (particles 70 – 100 μm) Hydro-isomerization, hydrocracking...

Introduction: hydrothermal synthesis

Ex.: $M_x^{I}[Al_xSi_yO_{2(x+y)}]\cdot zH_2O$

Na₂SiO₃ + NaOH + Al₂(SO₄)₃ + C₃H₇-NH₂ + (C₃H₇)₄N⁺Br⁻ + H₂O 160 °C, several days \rightarrow zeolites ZMS-5

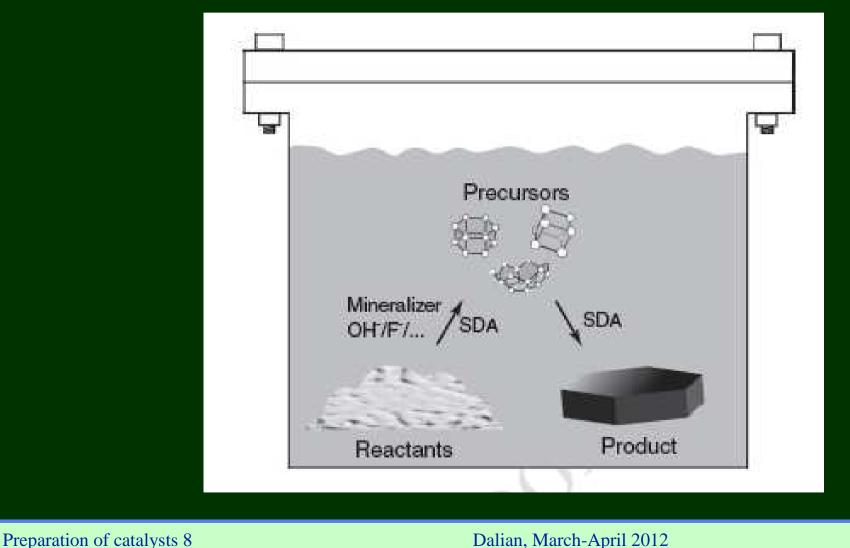
Solvent: H₂O Parameters:

- Temperature: T > boiling temperature (up to 300 °C)

pressure cooker)

- Pressure: increase with temperature

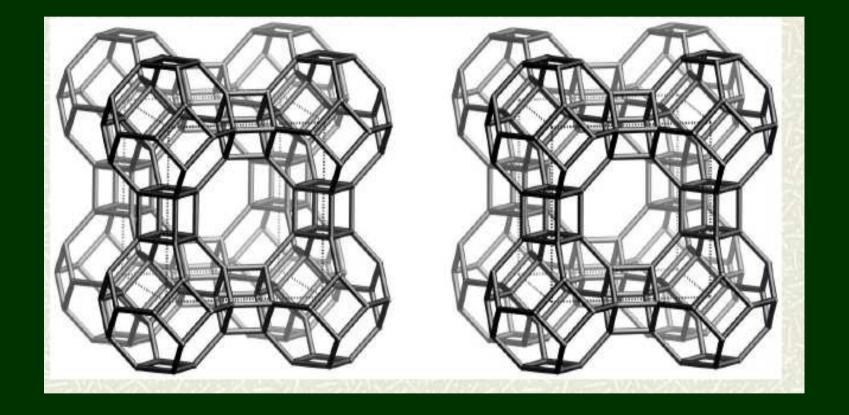
Ex.: water	T /°C	P /bar	
	120	1.9	(kitchen
	150	4.5	
	200	14	
	250	33	


→ use of autoclaves
First autoclave: 1645, Papin's pot

Introduction: hydrothermal synthesis

Schematic representation of zeolite formation process, from reactants to final crystalline product.

SDA = structure-directing agent


(Handbook heterogeneous catalysis)

7/xx

Introduction: exemple of structure

LTA framewotk

Preparation of catalysts 8

Dalian, March-April 2012

Zeolite-based catalysts

1) Introduction

- hydrothermal synthesis

2) Acidity

- zeolites
- aluminophosphates

3) Synthesis

- overall steps in zeolite crystallization
- model for zeolite growth
- aluminophosphates

Acidity: zeolites

Maximum number of protons (USY, ZSM-5...) → 0.2 till 1.2 mmol g⁻¹ Depends on the Si/Al ratio

Formal charge of the bridging oxygen atoms: Si-O-Si Si-OH-Si Si-O-Al Si-OH-Al

► Effect of structure on acid strength: Si-O-Al angle
► The higher the angle, the higher the acid strength of the proton
Angle between 130 ° (medium Brönsted acidity) and 180 ° (strong Brönsted acidity)

Acid strength is maximal at low Al concentration (high Si/Al ratio) → isolated Al Acis strength is minimal at the highest Al concentration

Acidity: aluminophosphates (AlPO₄-n) **P⁵⁺ and Al³⁺ cations alternate in T sites** O-P-O-Al-O-P-O-Al-O ➔ no acidity Si substitution to $P \rightarrow SiAlPO_4$ (or SAPO) → variable acid properties → see figure **Ex.: SAPO-37 (FAU)** T-atom % Si 12.5 % Al 50 % P 37.5 % **Environment:** Si: 4 Al **P: 4 A** Al: 3P + 1Si

Dalian, March-April 2012

Zeolite-based catalysts

1) Introduction

- hydrothermal synthesis

2) Acidity

- zeolites
- aluminophosphates

3) Synthesis

- overall steps in zeolite crystallization
- model for zeolite growth
- aluminophosphates

Synthesis: overall steps in zeolite crystallization

Hydrothermal conversion in supersaturated conditions

Ex. sodium silicate Na_2SiO_3 + sodium aluminate $NaAl(OH)_4$ + organic bases $NR_4^+OH^-$

 $M^{n}_{x/n}[Al_{x}Si_{y}O_{2(x+y)}]\cdot zH_{2}O$ Si/Al ratio adjustable low (close to 1) \rightarrow 70 – 100 °C high \rightarrow hydrotherm M: column 1 or 2 Parameter:

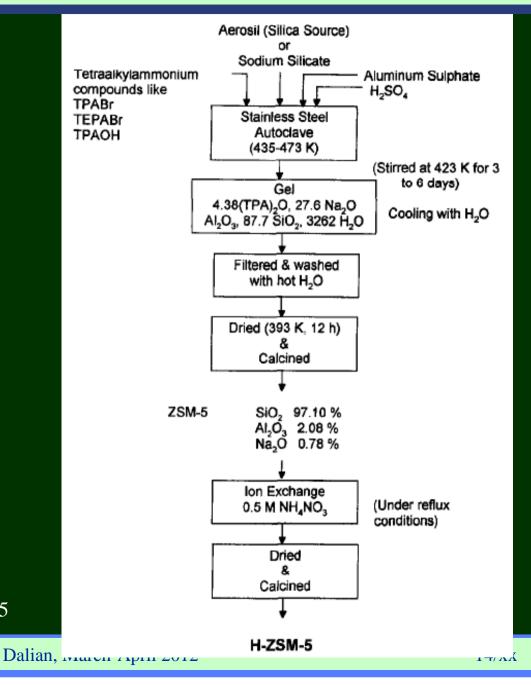
- Si/Al ratio
- H₂O/Si ratio
- HO-/Si ratio
- inorganic cations/Si
- organic additives/Si → templates
 - structure directing agent
 - structure determining effect

 \rightarrow hydrothermal synthesis \rightarrow gels, 100 – 350 °C, autoclave

Synthesis: overall steps in zeolite crystallization

Ex.: synthesis of ZSM-5

TPABr = $[(C_3H_7)_4N]^+$ **Br**⁻ **TPEABr** = $[(CH_3-C_3H_7)_4N]^+$ **Br**⁻ **TPAOH** = $[(C_3H_7)_4N]^+$ **HO**⁻


Composition of the gel 4.38 (TPA)₂O, 27.6 Na₂O Al₂O₃, 87.7 SiO₂, 3262 H₂O

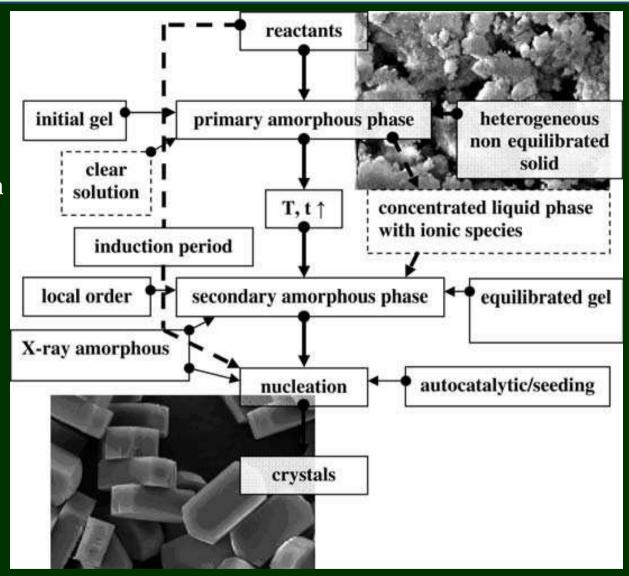
Ion exchange with NH₄NO₃

Drying, calcination 550 °C

Binding: binder alumina (50 wt.-%) + plasticizer (1 %) + peptizer (1 %) Forming by extrusion → pellets

C Perego, P. Villa, Catalysis Today 34 (1997) 281-305

Preparation of catalysts 8

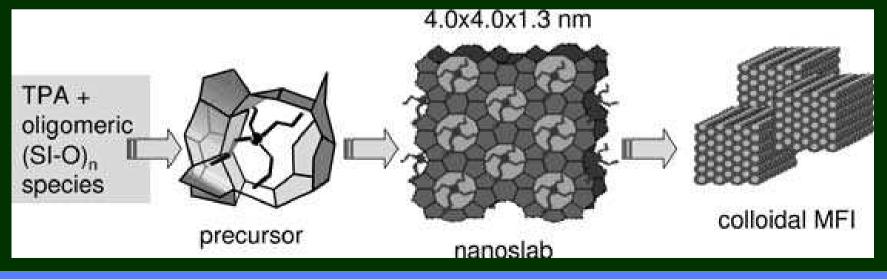

Synthesis: overall steps in zeolite crystallization

Induction period

Primary amorphous phase

Local order via successive depolymerization/polymerization

Secondary amorphous phase


Scheme of equilibration and change of order during a zeolite synthesis

Synthesis: model for zeolite growth

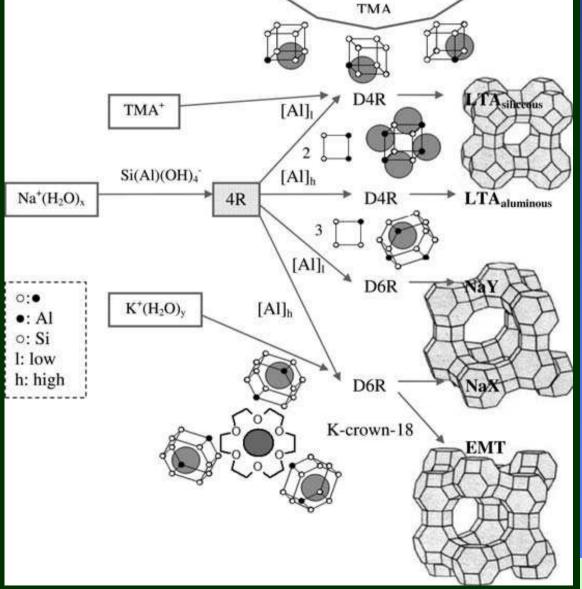
Classical nucleation-crystallization theory
→ Viable nucleus: between one and eigth unit cells

Role of structure directing agents (SDA) Tetrapropylammonium ions (TPA, $N(C_3H_7)_4^+$) at interphase between aqueous and organosilicon (TEOS) phases. Silicate condenses around TPA ions Zeolitization parameters: composition, basicity (pH 9 to 13), presence of mineralizing agents and template molecules $x SiO_2 : y Al_2O_3 : z Na_2O : u R : v H_2O = R = organic species$

Schematic representation of successive agglomerations of Si–O intermediates synthesis of MFI structures, with nanoslabs as key intermediates

Synthesis: model for zeolite growth

Role of template (structure directing agent SDA) → Influence zeolitization process SDA species surrounded by aluminosilicates in a particular geometry


→ building units

Na⁺(aq) templates four-rings (4Rs).
TMA (tetramethyl ammonium)
→ two 4Rs form D4R
→ Si-rich of Al-rich zeolite A (LTA)

Low Al content three 4R form D6R → NaY zeolite high Al content and K⁺(aq) → NaX zeolite

- 18-crown-6 D6Rs → EMT zeolite

(in de Jong, 2009)

Synthesis: AIPO4-n-based molecular sieve zeolites

Phosphate source: phophoric acid H₃PO₄ (pK_a 2, 7, 12) pH 3 to 10 Al source: pseudoboehmite AlO(OH)·nH₂O

Ex. $Pr_3N : Al_2O_3 : P_2O_5 : 40 H_2O$

Acronyms and T atom composition of AlPO4-n-based molecular sieve zeolites.

Acronym	T atoms
AlPO4-n	Al, P
SAPO-n	Si, Al, P
MAPO-n	M (Co, Fe, Mg, Mn, Zn)
MAPSO-n	M, Al, P, Si
ElAPO	El (As, B, Be, Ga, Ge, Li, Ti)
ElAPSO	El, Al, P, Si

Shaping of solid catalysts – Monolith-based catalysts

Zeolite-based catalysts

Ordered mesoporous materials

Case studies:

- Noble metal catalysts
- Methanol catalysts
- Hydrotreating catalysts
-

Ordered mesoporous materials

1) Introduction

2) mesoporous silica

- synthesis strategy
- pore models
- exemples
- pore size control
- functionalization

3) mesoporous carbon

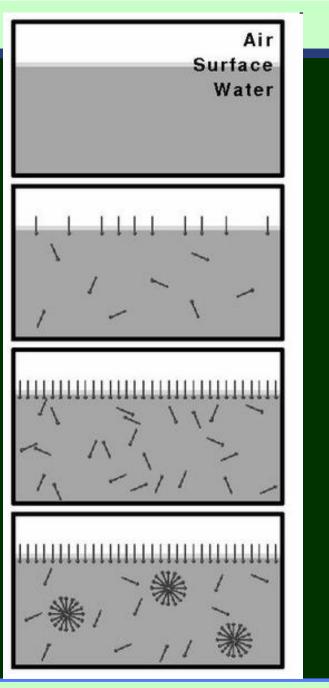
Introduction

New class of porous solids with uniform pore size 1.5 to 40 nm, large surface area (up to 2500 m² g⁻¹) and tunable structure Driving force \rightarrow self-assembly of molecules Weak bonds: van der Waals bonds, electrostatic bonds, hydrogen bonds, hydrophobic interactions, π - π stackings.

Pore wall remain amorphous (mesoporous silica)

1-D porosity → cylindrical channels

- **2-D porosity →** lamellar silica sheets
- **3-D** porosity **→** cubic structure, channels extending in 3 directions
- Synthesis use of amphiphilic molecules (surfactants)


Evolution of structure versus the surfactant concentration
→ Figure
Cmc = critical micelle concentration

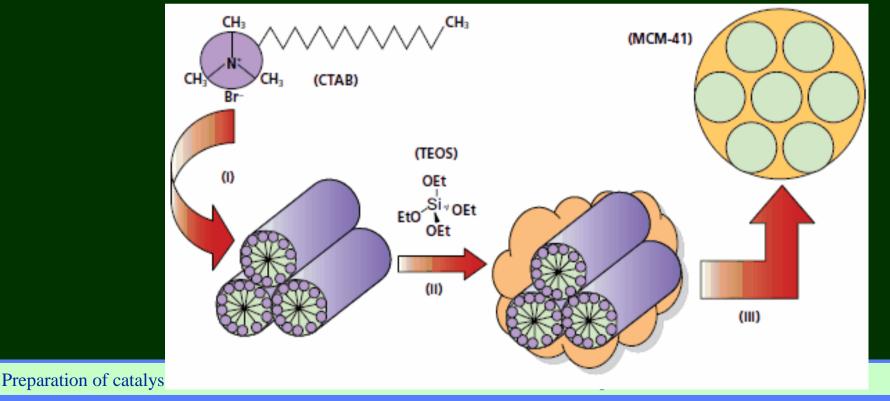
Introduction

Evolution of structure versus surfactant concentration Cmc = critical micelle concentration

Top to Bottom: Increasing concentration of surfactant → forming a layer on the surface and → forming micelles above the CMC

The forming 1-D-tubes, 2-D bilayer and 3-D cubes

Preparation of catalysts 8


Dalian, March-April 2012

Introduction: exemple of preparation (MCM-41)

(i) Surfactant (cetyltrimethylammonium bromide, CTAB, (CH₃)₃N(CH₂)₁₅CH₃Br) → form liquid crystalline micelles in water

(ii) Ceramic sol-gel precursor (tetraethoxysilane, TEOS, (C₂H₅O)₄Si) is added
 → silica network around the micelles upon hydrolyses and condensation

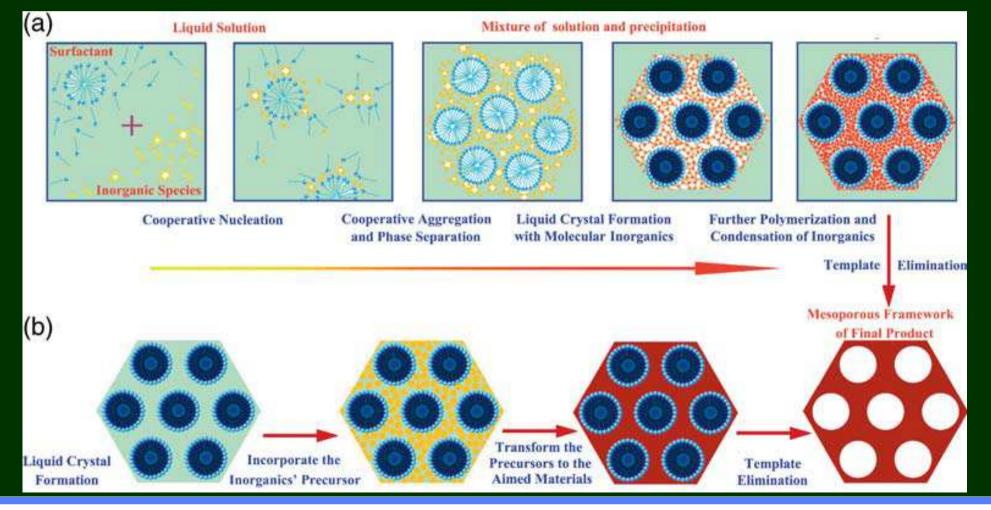
(iii) Removal of the organic template by calcination or solvent extraction
 → mesoporous ceramic material

Ordered mesoporous materials

1) Introduction

2) mesoporous silica

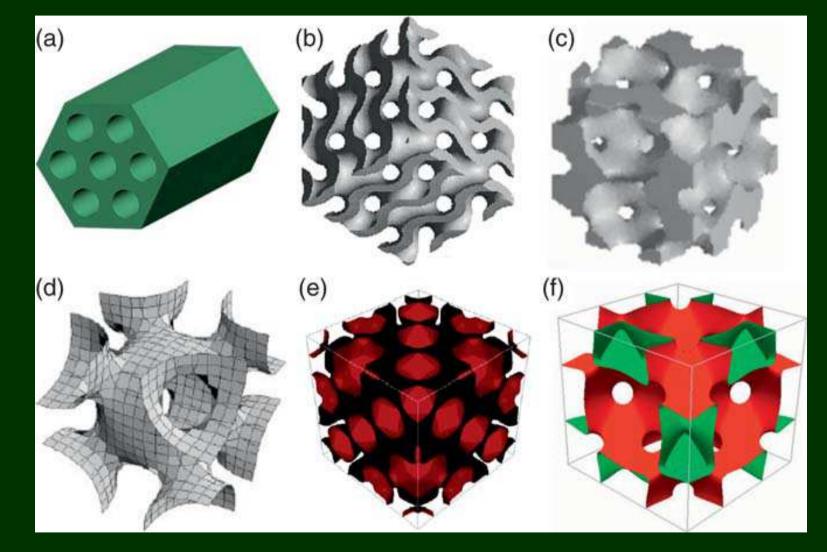
- synthesis strategy
- pore models
- exemples
- pore size control
- functionalization


3) mesoporous carbon

Mesoporous silica: synthetic strategy

Route (a): cooperative self-assembly due to interaction between inorganic and organic species at the molecular scale → 3D ordered arrangements.

Route (b): true liquid-crystal template pathway → forms 3D ordered arrangements, and then incorporates the inorganic precursors.


Most of the mesostructure belong to hexagonal or cubic phases

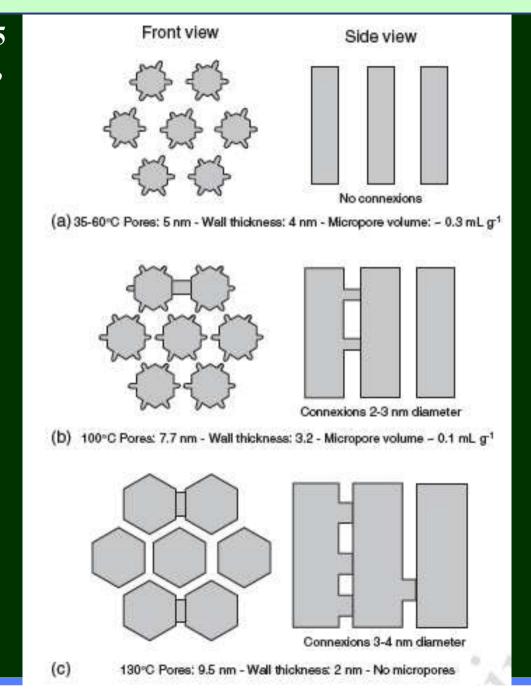
Mesoporous silica: pore models

Pore models of mesostructures with symmetries of

(a) p6mm,
(b) Ia3d,
(c) Pm3n,
(d) Im3m,
(e) Fd3m, and
(f) Fm3m.

Mesoporous silica: examples

$$\label{eq:MCM-41} \begin{split} MCM-41 &= \mbox{Mobile Catalytic Material \#41} \\ \mbox{Quaternary cationic surfactants } [(CH_3)_3 NC_n H_{2n+1}]^+ \ X^- \ (n \ even, 8 \ to \ 16; \ X = Cl, \ Br) \\ \mbox{Cell parameters from XRD and TEM: about 4 nm} \\ \mbox{Symmetry: P6mm} \\ \mbox{Pore channel geometry: cylinders} \\ \mbox{Pore wall thickness about 1 nm} \\ \mbox{BET surface area} > 1000 \ m^2 \ g^{-1} \end{split}$$


SBA-15 = Santa Barbara Amorphous #15
Symmetry: P6mm
Prepared from P123 at 40 – 100 °C (triblock copolymer)
Pluronic123 = HO(CH₂CH₂O)₂₀(CH₂CH(CH₃)O)₇₀(CH₂CH₂O)₂₀H,
Uniform pore size 6.5 to 10 nm
Pore wall thickness 3.1 to 4.8 nm
→ higher thermal stability

MCM-48 Symmetry: Ia-3d

Mesoporous silica: SBA-15

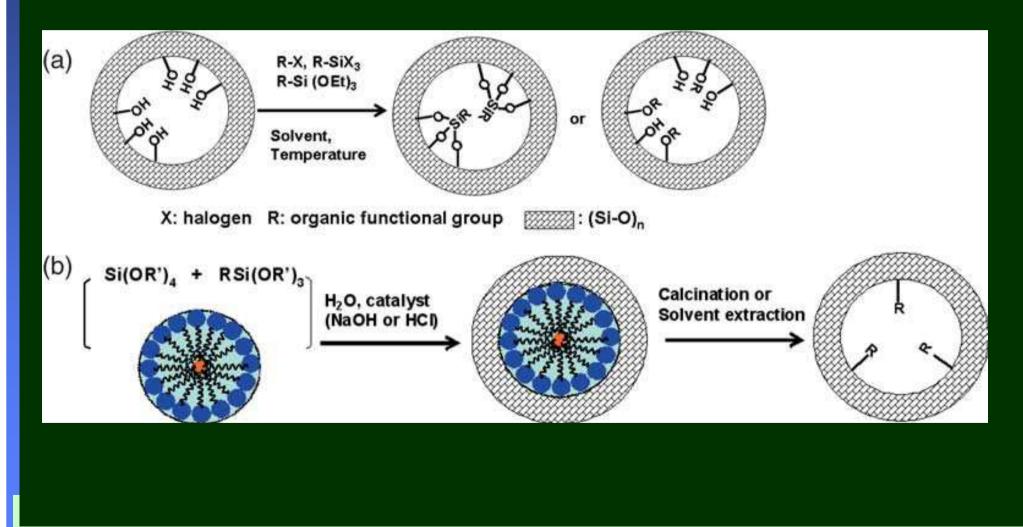
SBA-15 = Santa Barbara Amorphous #15 Left: representation of the pore topology, synthesis (a) between 35 °C and 60 °C; (b) at 100 °C; and (c) at 130 °C.

pore size increases
channels progressively interconnected

Mesoporous silica: pore-size control

Pore sizes of ordered silica mesostructures obtained by various methods.

Pore size (nm)	Method
2–5	Surfactants with different chain lengths
4—7	Long-chain quaternary cationic salts as surfactants
	High-temperature hydrothermal treatment
5–8	Charged surfactants with addition of organic swelling agents
	such as TMB and midchain amines
2–8	Nonionic surfactants
4-20	Triblock copolymer surfactants


- Adding swelling agents expand pore sizes (ex.: dodecane, trimethyl benzene (TMB)

- Hydrothermal treatment: pore size of SBA-15 can be tuned from 4.6 to 10 nm by increasing the temperature from 70 to 130 $^\circ C$

Mesoporous silica: functionalization

Schematic diagram for (a) Grafting

(b) Co-condensation with surfactants

Ordered mesoporous materials

1) Introduction

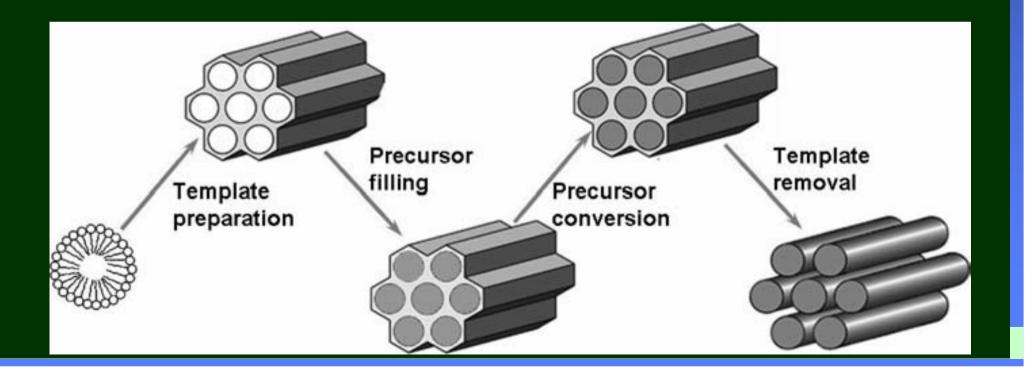
2) mesoporous silica

- synthesis strategy
- pore models
- exemples
- pore size control
- functionalization

3) mesoporous carbon

Preparation of catalysts 8

Dalian, March-April 2012


Carbon: hard templating approach by nanocasting

Ordered mesoporous silicates employed as templates for formation of other materials

Precursor incorporated in the channels (impregnation, ion-exchange, adsorption;;;)

Heat treatment → precursors are decomposed, nanoparticles are formed and growth in the channels Mesoporous silica templates are dissolved

→ Pore size distribution wider than the silica template

End of part 8

Preparation of catalysts 8

Dalian, March-April 2012