DICP Course - Dalian, 2012 Preparation of solid catalysts Part 4

Supported by the Chinese Academy of Sciences

Charles Kappenstein, Professor Emeritus, University of Poitiers, France

DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Preparation of catalysts 4

Dalian, March-April 2012

1/xx

Introduction and general aspects

Interfacial chemistry – Electrostatic adsorption

Impregnation, drying, calcination and/or reduction

Sol-gel chemistry processing

Deposition – Precipitation – Coprecipitation

Shaping of solid catalysts – Monolith-based catalysts

Zeolite-based catalysts

<u>**Characterization – High throughput experimentation**</u>

Case studies:

- Noble metal catalysts
- Methanol catalysts
- Hydrotreating catalysts
-

Sol-gel chemistry processing

- 1) The physics of sols
- 2) Sol-gel processing of silicate materials
- 3) Sol-gel chemistry of metal oxides
- 4) Aerogels

Sol gel process → creation of a network by condensation reactions Definitions:

- Sol: stable suspension of colloidal solid particles (or polymers) in a liquid particles amorphous or crystalline, size 1 to 1000 nm
- Gel: porous 3-D solid network supporting a continuous liquid phase (wet gel)

Colloidal gels: network made by agglomeration of dense colloidal particles

Type of bonds:

- covalent bonds

- → sol-gel process irreversible
- van der Waals bonds, H-bonds → sol-gel process reversible

Sol gel process

Aging of the gel, washing

What are the forces in a colloidal suspension?

- electrostatic repulsion between charged particles
- van der Waals attraction

Influence of pH on the surface hydroxyl groups M-OH (M = Al, Si, Zr, Ti, Fe...)

pH at which the particles are electrically neutral: PZC (Point of Zero Charge)

	SiO ₂	SnO ₂	TiO ₂	Al_2O_3	MgO
PZC	2.5	4.5	6.0	7.0-9.0	12

Formation of a double-layer on the surface → development of a surface potential Ex.: positively charged surface

- rigid Stern layer containing water + counter ions -> linear decrease of potential
- diffuse layer → exponential decrease of potential
- Helmholtz plane: between Stern layer and diffuse layer;potential Φ_H slip plane: between diffuse layer and bulk;Zeta potential Φ_{ζ}

In an electric field, the particle move with the counter ions The slip plane separates region of fluid that moves with the particles from bulk

pH for $\Phi_{\zeta} = 0$ **>** isoelectric point IEP

For stable colloidal suspensions $\Rightarrow \Phi_{\zeta} > 30 - 50 \text{ mV}$

If Φ_ζ decreases (ionic strength increases)
 → double layer is compressed
 → coagulation

Coagulated colloid can be redispersed → peptization → remove counter ions by washing

→ videos of gel formation

Sol-gel chemistry processing

1) The physics of sols

2) Sol-gel processing of silicate materials

3) Sol-gel chemistry of metal oxides

4) Aerogels

Dalian, March-April 2012

Sol-gel processing of	f silicate materia	ıls				
Ex.: $Si(OR)_4 + 2 H_2O$	\rightarrow SiO ₂ (sol-gel + 4	ROH	slow rate in water			
Tetraethoxysilane Tetramethoxysilane	Si(OC ₂ H ₅) ₄ Si(OCH ₃) ₄	TEOS TMOS				
→ The gelation can be initiated by pH change						
Reactions occurring: → see scheme						
→ competition between hydrolysis reactions and condensation reactions						
→See next figure						

Sol-gel processing of silicate materials Ex.: $Si(OR)_4 + 2 H_2O \rightarrow SiO_2(sol-gel + 4 ROH)$ slow rate in water (a) Under acidic conditions, Under basic conditions, condensation rate > hydrolysis rate; resulting gel is more highly branched hydrolysis rate > condensation rate; resulting gel is weakly branched Relative Condensation reaction rate Hydrolysis Increasing pH

Cross-linked linear chains How to explain these differences? → different relative rates → need of a simple model Parameters: - temperature - pH - catalyst - nat branched clusters

- nature of alkoxy group
- reactant mol ratio $R_m = n(OR)/n(H_2O)$

Ex.: $Si(OR)_4 + 2 H_2O \rightarrow SiO_2(sol-gel + 4 ROH)$ reactant mol ratio $R_m = n(OR)/n(H_2O)$

Stoichiometry $\mathbf{Rm} = \mathbf{2}$

R_m < 2 (excess water)</th>→ hydrolysisR_m > 2 (excess silane)→ condensation

slow rate in water

sol-gel transition

- → formation of a continuous network
- → viscosity increases strongly
- → gelification time:

 $Si(OCH_3)_4 + H_2O$ Si(OCH₃)₄ + HCl 0.05 mol L⁻¹

>1000 h 92 h

Model: percolation theory See figure

Formation of clusters of particles

p: fraction or probability of randomly filled sites (sol particles) 2 neighboring filled sites can form a bond → cluster of size s

Detail of a bond percolation on the square lattice in two dimensions with percolation probability p = 0.51

Site percolation on a square lattice left low fraction right high fraction

Model: percolation theory **→** formation of clusters of particles See figure

p: fraction of randomly filled sites (sol particles)

2 neighboring filled sites can form a bond **→** cluster of size s

One important parameter \rightarrow **p**_c = percolation threshold \rightarrow gel point

At the gel point the network is formed, but unbounded clusters are still present → importance for aging process after reaching the gel point

```
This model \rightarrow site percolation
Another model \rightarrow bond percolation
```

Values of p_c

	site percolation	bond percolation
2-D square	0.5927	0.5000
3-D cubic	0.3116	0.2488
3-D fcc	0.1992	0.1202

Aging: gelification reactions continue due to the presence of isolated clusters

Drying step

- at 1 bar pressure → formation of xerogels,
 - → shrinkage of the gel due to interface forces (liquid-vapor capillary forces)
 - → network destroyed, formation of a powder
 - → formation of films, coating layers after thermal treatments
- under supercritical conditions → formation of aerogels
 - → volume of the gel is preserved
 - → control of shrinkage

Sol-gel chemistry processing

- 1) The physics of sols
- 2) Sol-gel processing of silicate materials
- 3) Sol-gel chemistry of metal oxides
- 4) Aerogels

Sol-gel chemistry of metal oxides

Ex.: $[Al(OH_2)_6]^{3+}$ stable for pH < 3 Formation of alumina gel by increasing the pH

Acid-base equilibrium M-OH₂ → M-OH (we ignore the charges) Olation reaction M-OH + M-OH₂ → M-OH-M + H₂O formation of hydroxo bridge Oxolation reaction M-OH + HO-M → M-O-M + H₂O formation of oxo bridge

Difference between Si⁴⁺ and M (Al³⁺, Fe³⁺, Zr⁴⁺...)?

Si coordination number 4, tetrahedral geometry (point group T_d) M coordination number 6, octahedral geometry (point group O_h)

Preparation of a supported catalyst

Sol-gel chemistry processing

1) The physics of sols

2) Sol-gel processing of silicate materials

3) Sol-gel chemistry of metal oxides

4) Aerogels

- supercritical drying
- drying at ambient temperature
- properties and applications

a) Supercritical drying

Preparation of aerogel

Critical points:

water: Tc = 374 °C

Pc = 220 bar

CO₂: Tc = 31 °CPc = 74 bar

Aerogel synthesis:

Gel $\xrightarrow{1}$ acetogel

- \rightarrow carbogel $\xrightarrow{3}$ aerogel
- 1: water/acetone exchange
- 2: acetone/CO₂ exchange
- 3: supercritical drying

a) Supercritical drying

Reactor for supercritical drying

Aerogels b) D

How to reduce the capillary forces but avoiding the supercritical conditions?

 \rightarrow change the solvent: water \rightarrow alcohol \rightarrow water free solvent

→ transform the surface silanol groups Si-OH into hydrophobic groups

=Si-OH + ClSi(CH₃)₃ → =Si-O-Si(CH₃)₃ + HCl chlorotrimethylsilane hydrophobic surface

→ Gel shrinks, then expands again to a volume close to original size

c) Properties and applications

Characteristics of aerogels

- → very high porosity
- → very low density

SiO₂ aerogels

- most studied and used
- transparent

- very low thermal conductivity -> very good therma

One famous exemple: Stardust NASA interplanetary mission Website: <u>http://stardust.jpl.nasa.gov/tech/aerogel.html</u>

→ First mission to collect cosmic dust and return the sample to Earth. Launched February 1999, travelled nearly 5.10° km, returned to earth January 2006

Main challenges → slowing down the particles from their high velocity with minimal heating or other effects that would cause their physical alteration.

To collect the particles without damaging them, a silicon-based solid with a porous, sponge-like structure is used in which 99.8 percent of the volume is empty space.

Aerogel is 1,000 times less dense than glass. When a particle hits the aerogel, it buries itself in the material, creating a carrotshaped track up to 200 times its own length, as it slows down and comes to a stop.

Since aerogel is transparent, scientists use these tracks to find the tiny particles.

c) Properties and applications

One famous exemple: Stardust NASA interplanetary mission Website: <u>http://stardust.jpl.nasa.gov/tech/aerogel.html</u>

Traces of dust particles:

Preparation of catalysts 4

Dalian, March-April 2012

Characterization: support alone and Pt catalyst

Specific surface area (after calcination at 1200 °C)

28/xx

Preparation of catalysts 4

Dalian, March-April 2012